فروشنده دوره گرد با الگوریتم ژنتیک vb.net همراه با مستند سازی و توضیح نحوه راه اندازی برنامه
...
پایان نامه : داده کاوی و کاربرد آن در تشخیص بیماری ها ( دیابت )
مروزه در دانش پزشکی جمع آوری داده های فراوان در مورد بیماری های مختلف از اهمیت فراوانی برخوردار است. مراکز پزشکی با مقاصد گوناگونی به جمع آوری این داده ها می پردازند . تحقیق روی این داده ها و به دست آوردن نتایج و الگوهای مفید در رابطه با بیماری ها ،یکی از اهداف استفاده از این داده ها است . حجم زیاد این داده ها و سردرگمی حاصل از آن مشکلی است که مانع رسیدن به نتایج قابل توجه می شود . بنابراین از داده کاوی برای غلبه بر این مشکل و به دست آوردن روابط مفید بین عوامل خطر زا در بیماری ها استفاده می شود. این مقاله به معرفی داده کاوی وکاربردآن در صنعت پزشکی (پیش بینی بیماری) با استفاده از الگوریتم های داده کاوی به همراه نرم افزارهای مرتبط با آن پرداخته است
قهرست :
فصل اول : مقدمه
مقدمه
شرح و بیان مسئله
هدف تحقیق
اهمیت و کاربرد نتایج تحقیق
محدودیت
تعریف عملیاتی واژگان
فصل دوم : مفاهیم داده کاوی
تاریخچه
موضوع داده کاوی چیست؟
تعاریف داده کاوی
تفاوت داده کاوی و آنالیزهای آماری
کاربرد های داده کاوی
چند مثال در مورد مفهوم داده کاوی
مراحل داده کاوی
مرحله اول: Business Understanding
مرحله دوم: Data Understanding
جمع آوری داده ها
بحث شرح و توصیف داده ها
مرحله سوم: Data Preparation
Data selecting :انتخاب داده
مرحله چهارم: Modelling
مرحله پنجم: Evaluation
مرحله ششم: Deployment
مفاهیم اساسی در داده کاوی
Bagging
Boosting
MetaLearning
عناصر داده کاوی
تکنیک های داده کاوی
دسته بندی
خوشه بندی
رگرسیون گیری
تجمع وهمبستگی
درخت تصمیم گیری
الگوریتم ژنتیک
شبکه های عصبی مصنوعی
گام نهایی فرآیند داده کاوی،گزارش دادن است
تکنولوژی های مرتبط با داده کاوی
انبار داده
OLAP
محدودیت ها
فصل سوم : کاربرد داده کاوی در پزشکی
داده کاوی در عرصه سلامت
استراتژی های داده کاوی
نمونه هایی از کاربرد داده کاوی در سلامت
مقایسه الگوریتم های هوشمند در شناسایی بیماری دیابت
دسته بندی کننده Bagging
دسته بندی کننده Naïve Bayse
دسته بندی کننده SVM
دسته بندی کننده Random Forest
دسته بندی کننده C
فصل چهارم :درخت تصمیم وپیاده سازی نرم افزار وکا
اهدااف اصلی درخت های تصمیم گیری دسته بندی کننده
گام های لازم برای طراحی یک درخت تصمیم گیری
جذابیت درختان تصمیم
بازنمایی درخت تصمیم
مسائل مناسب برای یادگیری درخت تصمیم
مسائل در یادگیری درخت تصمیم
اورفیتینگ داده ها
انواع روش های هرس کردن
عام سازی درخت
مزایای درختان تصمیم نسبت به روش های دیگر داده کاوی
معایب درختان تصمیم
انواع درختان تصمیم
درختان رگراسیون
الگوریتم ID
الگوریتم Idhat
االگوریتم id
الگوریتم idhat
الگوریتم Cart
الگوریتم C
نرم افزار های داده کاوی
نرم افزار WEKA
قابلیت های WEKA
نرم افزار JMP
قابلیت های JMP
پیاده سازی نرم افزار وکا
پیاده سازی توسط الگوریتم Naïve Bayse
پیاده سازی توسط الگوریتم Decision Trees
ایجاد مدل رگرسیون
ایجاد مدل خوشه بندی
پیاده سازی با الگوریتم نزدیک ترین همسایه
برگه visualize
فصل پنجم:بحث ونتیجه گیری
بحث
نتیجه گیری
پیشنهادات
منابع
پایان نامه کارشناسی الگوریتم ژنتیک
161 صفحه در قالب word
چکیده
الگوریتم ژنتیک (Genetic Algorithm - GA) تکنیک جستجویی در علم رایانه برای یافتن راهحل تقریبی برای بهینهسازی و مسائل جستجو است. الگوریتم ژنتیک نوع خاصی از الگوریتمهای تکامل است که از تکنیکهای زیستشناسی فرگشتی مانند وراثت و جهش استفاده میکند.
در واقع الگوریتمهای ژنتیک از اصول انتخاب طبیعی داروین برای یافتن فرمول بهینه جهت پیشبینی یا تطبیق الگو استفاده میکنند. الگوریتمهای ژنتیک اغلب گزینه خوبی برای تکنیکهای پیشبینی بر مبنای تصادف هستند. مختصراً گفته میشود که الگوریتم ژنتیک (یا GA) یک تکنیک برنامهنویسی است که از تکامل ژنتیکی به عنوان یک الگوی حل مسئله استفاده میکند. مسألهای که باید حل شود ورودی است و راهحلها طبق یک الگو کد گذاری میشوند که تابع fitness نام دارد هر راه حل کاندید را ارزیابی میکند که اکثر آنها به صورت تصادفی انتخاب میشوند.
کلاً این الگوریتمها از بخش های زیر تشکیل میشوند: تابع برازش، نمایش، انتخاب، تغییر.
کلمات کلیدی: الگوریتم ژنتیک، هیوریستیک، ترکیب و جهش، تکامل طبیعی داروین، معمای هشت وزی
فهرست مطالب
فصل اول 1
1-1- مقدمه 2
1-2- به دنبال تکامل 3
1-3- ایدۀ اصلی استفاده از الگوریتم ژنتیک 4
1-4- درباره علم ژنتیک 6
1-5- تاریخچۀ علم ژنتیک 6
1-6- تکامل طبیعی (قانون انتخاب طبیعی داروین) 7
1-7- رابطه تکامل طبیعی با روشهای هوش مصنوعی 10
1-8- الگوریتم 11
1-8-1- الگوریتمهای جستجوی ناآگاهانه 12
1-8-1-الف- جستجوی لیست 12
1-8-1-ب- جستجوی درختی 13
1-8-1-پ- جستجوی گراف 14
1-8-2- الگوریتمهای جستجوی آگاهانه 14
1-8-2-الف- جستجوی خصمانه 15
1-9- مسائل NP-Hard 15
1-10- هیوریستیک 17
1-10-1- انواع الگوریتمهای هیوریستیک 19
فصل دوم 21
2-1- مقدمه 22
2-2- الگوریتم ژنتیک 23
2-3- مکانیزم الگوریتم ژنتیک 25
2-4- عملگرهای الگوریتم ژنتیک 28
2-4-1- کدگذاری 28
2-4-2- ارزیابی 29
2-4-3- ترکیب 29
2-4-4- جهش 29
2-4-5- رمزگشایی 30
2-5- چارت الگوریتم به همراه شبه کد آن 30
2-5-1- شبه کد و توضیح آن 31
2-5-2- چارت الگوریتم ژنتیک 33
2-6- تابع هدف 34
2-7- روشهای کد کردن 34
2-7-1- کدینگ باینری 35
2-7-2- کدینگ جایگشتی 36
2-7-3- کد گذاری مقدار 37
2-7-4- کدینگ درخت 38
2-8- نمایش رشتهها 39
2-9- انواع روشهای تشکیل رشته 41
2-10- باز گرداندن رشتهها به مجموعه متغیرها 42
2-10-1- تعداد بیتهای متناظر با هر متغیر 43
2-11- جمعیت 44
2-11-1- ایجادجمعیت اولیه 44
2-11-2- اندازه جمعیت 45
2-12- محاسبه برازندگی (تابع ارزش) 46
2-13- انواع روشهای انتخاب 48
2-13-1- انتخاب چرخ رولت 49
2-13-2- انتخاب حالت پایدار 51
2-13-3- انتخاب نخبه گرایی 51
2-13-4- انتخاب رقابتی 52
2-13-5- انتخاب قطع سر 52
2-13-6- انتخاب قطعی بریندل 53
2-13-7- انتخاب جایگزینی نسلی اصلاح شده 53
2-13-8- انتخاب مسابقه 54
2-13-9- انتخاب مسابقه تصادفی 54
2-14- انواع روشهای ترکیب 54
2-14-1- جابهجایی دودوئی 55
2-14-2- جابهجایی حقیقی 58
2-14-3- ترکیب تکنقطهای 59
2-14-4- ترکیب دو نقطهای 60
2-14-5- ترکیب n نقطهای 60
2-14-6- ترکیب یکنواخت 61
2-14-7- ترکیب حسابی 62
2-14-8- ترتیب 62
2-14-9- چرخه 63
2-14-10- محدّب 64
2-14-11- بخش_نگاشته 64
2-15- احتمال ترکیب 65
2-16- تحلیل مکانیزم جابجایی 66
2-17- جهش 66
2-17-1- جهش باینری 69
2-17-2- جهش حقیقی 69
2-17-3- وارونه سازی بیت 70
2-17-4- تغییر ترتیب قرارگیری 70
2-17-5- وارون سازی 71
2-17-6- تغییر مقدار 71
2-18- محک اختتام اجرای الگوریتم ژنتیک 72
2-19- انواع الگوریتمهای ژنتیکی 72
2-19-1- الگوریتم ژنتیکی سری 73
2-19-2- الگوریتم ژنتیکی موازی 74
2-20- مقایسه الگوریتم ژنتیک با سیستمهای طبیعی 75
2-21- نقاط قوّت الگوریتمهای ژنتیک 76
2-22- محدودیتهای GAها 78
2-23- استراتژی برخورد با محدودیتها 79
2-23-1- استراتژی اصلاح عملگرهای ژنتیک 79
2-23-2- استراتژی رَدّی 79
2-23-3- استراتژی اصلاحی 80
2-23-4- استراتژی جریمهای 80
2-24- بهبود الگوریتم ژنتیک 81
2-25- چند نمونه از کاربردهای الگوریتمهای ژنتیک 81
فصل سوم 86
3-1- مقدمه 87
3-2- حلّ معمای هشت وزیر 88
3-2-1- جمعیت آغازین 90
3-2-2- تابع برازندگی 94
3-2-3- آمیزش 95
3-2-4- جهش ژنتیکی 96
3-3- الگوریتم ژنتیک و حلّ مسألۀ فروشندۀ دورهگرد 97
3-3-1- حل مسأله TSP به وسیله الگوریتم ژنتیک 99
3-3-2- مقایسه روشهای مختلف الگوریتم و ژنتیک برای TSP 107
3-3-3- نتیجه گیری 108
3-4- حلّ مسأله معمای سودوکو 109
3-4-1- حل مسأله 110
3-4-2- تعیین کروموزم 110
3-4-3- ساختن جمعیت آغازین یا نسل اول 111
3-4-4- ساختن تابع از ارزش 112
3-4-5- ترکیب نمونهها و ساختن جواب جدید 113
3-4-6- ارزشیابی مجموعه جواب 118
3-4-7- ساختن نسل بعد 118
3-5- مرتب سازی به کمک GA 119
3-5-1- صورت مسأله 119
3-5-2- جمعیت آغازین 119
3-5-3- تابع برازندگی 122
3-5-4- انتخاب 123
3-5-5- ترکیب 123
3-5-6- جهش 124
فهرست منابع و مراجع 126
پیوست 127
واژهنامه 143
1-1- مقدمه
امروزه یکی از مهمترین زمینههای تحقیق و پژوهش، توسعۀ روشهای جستجو بر مبنای اصول تکامل طبیعی میباشد. در محاسبات تکاملی به صورت انتزاعی از مفاهیم اساسی تکامل طبیعی در راستای جستجو برای یافتن راه حلّ بهینه برای مسائل مختلف الهام گرفته شده است. در همین راستا مطالبی که در این فصل پیش روی شما پژوهندۀ گرامی قرار خواهد گرفت مفاهیمی دربارۀ علم کامپیوتر و علم ژنتیک مانند: الگوریتم و انواع آن، جستجو، هیوریستیک، تاریخچه الگوریتم ژنتیک و علم ژنتیک، ژن، کروموزوم، ارث بری و... می باشد، و یا به بیانی خلاصهتر میتوان گفت: در این فصل به بیان مقدّمات خواهیم پرداخت.
انشاءالله مطالعۀ این فصل مفهومی ساده و روشن از موضوعِ این نوشتار را برای شما خوانندۀ محترم به تصویر خواهد کشید و شما را در درک آسان و سریع فصول بعدی یاری خواهد رساند.
1-2- به دنبال تکامل...
بسیاری از دانشمندان و اندیشمندان، میل به تکامل را مهترین عامل پیشرفت دستگاه آفرینش و انسان میدانند. از این دیدگاه هر پدیدهای را که بنگرید، یک مسأله جستجوست. انسان همواره میکوشد تا به تکامل برسد، از این رو میاندیشد، میپژوهد، میکاود، میسازد، مینگارد و همواره میکوشد تا باقی بماند. حتی میتوان گفت که میل به زادن فرزند، گامی در برآوردن این نیاز و البته دیگر جانداران است. میتوان این تلاش در راه رسیدن به تکامل را یک مسألۀ جستجو تعبیر کرد.
کوشش یک مؤسسه اقتصادی یا تولیدی –که تابعی برای تبدیل دادهها به ستادهاست- برای کمینه کردن هزینهها و بیشینه کردن سود، یک مسألۀ جستجو است. تلاش یک سپاه در حال جنگ، برای وارد کرد بیشترین خسارات بر دشمن با از دست دادن کمترین نیرو و جنگافزار، یا کوشش یک دانشآموز برای دست یافتن به بالاترین نمره، سعی یک موسیقیدان یا نگارگر برای خلق زیباترین اثر هنری، تلاش یک کاندیدا برای به دست آوردن بیشترین رأی، طراحی یک نجّار برای ساختن راحتترین صندلی، تلاش و نقشه چینی ورزشکاران و مربّیان برای یافتن راههای پیروزی بر حریف و... همگی جستجویی در فضای یک مسأله برای یافتن نقاط یا ناحیه بهینگی (بیشینه یا کمینه) هستند و همین امر موجب پیشرفت تمدن و آفرینش شده است.
در دانش کامپیوتر و فناوری اطلاعات هم «جستجو» یکی از مهمترین مسائل است. تنها کافیست که حجم اطلاعات قرار گرفته بر حافظههای گوناگون و اینترنت را در نظر بگیریم تا جایگاه ویژه آن را دریابیم.
تاکنون روشهای بسیاری توسط طراحان الگوریتمها برای انجام جستجو بر دادههای دیجیتالی ارائه شده است. روشهایی به نام جستجوی سریع[1] و جستجوی دودویی[2]، از سادهترین الگوریتمهایی هستند که دانشجویان گرایشهای مهندسی کامپیوتر در نخستین سالهای دوره کارشناسی فرا میگیرند، امّا این الگوریتمها شاید، هنگامی که با حجمی گسترده از دادهها روبرو شوند، کارایی ندارند و حتی الگوریتمهای پیشرفتهتر مانند جستجوی بازپخت شبیهسازی شده[3] و الگوریتم عمیقشوندۀ تکراری[4] نیز در هنگام رویارویی با مسائل ابرفضا[5] از یافتن راهحل یا ناحیههای دلخواه در میمانند. در این میان یک روش جادویی وجود وجود دارد که مسائل بزرگ را به سادگی و به گونهای شگفتانگیز حل میکند و آن «الگوریتم ژنتیک»[6] است. ناگفته پیداست که واژۀ «الگوریتم ژنتیک» از دو واژۀ «الگوریتم» و «ژنتیک» تشکیل شده است که خود مبیّن این مطلب است که این روش از دو علم ریاضی و زیستشناسی برای حل مسائل کمک میگیرد.
الگوریتمژنتیک بر خلاف دیگر روشهای جستجو، که توسط طراحان نگاشته میشوند، در حقیقت به دست دستگاه آفرینش پدید آمده، و پس از شناخت نسبی دانشمندان از این روش به صورت مسألهای ریاضی فرموله شده و وارد دانش مهندسی کامپیوتر و دیگر علوم مرتبط گردیده است. در یکی دو دهه گذشته که این الگوریتم در علوم مهندسی بکار گرفته شده، ناباورانه چنان دستآوردها و نتایج شگفتانگیزی داشته که نگاه بسیاری از دانشپژوهان علوم گوناگون فنیمهندسی را به خود جلب کرده است.[1]
1-3- ایدۀ اصلی استفاده از الگوریتم ژنتیک
در دهه 70 میلادی دانشمندی از دانشگاه میشیگان به نام «جان هلند»[7] ایده استفاده از الگوریتم ژنتیک را در بهینهسازیهای مهندسی مطرح کرد. ایده اساسی این الگوریتم انتقال خصوصیات موروثی توسط ژنهاست. (ژنها قطعاتی از یک کروموزوم هستند که اطلاعات مورد نیاز برای یک مولکول DNA یا یک پلی پپتید را دارند. علاوه بر ژنها، انواع مختلفی از توالیهای مختلف تنظیمی در روی کروموزومها وجود دارد که در همانندسازی، رونویسی و... شرکت دارند.([8]. فرض کنید مجموعه خصوصیات انسان توسط کروموزومهای او به نسل بعدی منتقل میشوند. هر ژن در این کروموزومها نماینده یک خصوصیت است. بعنوان مثال ژن 1 میتواند رنگ چشم باشد، ژن 2 طول قد، ژن 3 رنگ مو و الی آخر. حال اگر این کروموزوم به تمامی، به نسل بعد انتقال یابد، تمامی خصوصیات نسل بعدی شبیه به خصوصیات نسل قبل خواهد بود. بَدیهیست که در عمل چنین اتفاقی رخ نمیدهد. در واقع بصورت همزمان دو اتفاق برای کروموزومها میافتد. اتّفاق اول موتاسیون(جهش)[9] است. موتاسیون به این صورت است که بعضی ژنها بصورت کاملاً تصادفی تغییر میکنند. البته تعداد اینگونه ژنها بسیار کم میباشد اما در هر حال این تغییر تصادفی همانگونه که پیشتر دیدیم بسیار مهم است. مثلاً ژن رنگ چشم میتواند بصورت تصادفی باعث شود تا در نسل بعدی یک نفر دارای چشمان سبز باشد، در حالی که تمامی نسل قبل دارای چشم قهوهای بودهاند. علاوه بر موتاسیون اتفاق دیگری که میافتد و البته این اتفاق به تعداد بسیار بیشتری نسبت به موتاسیون رخ میدهد چسبیدن ابتدای یک کروموزوم به انتهای یک کروموزوم دیگر است.[10] این همان چیزیست که مثلاً باعث میشود تا فرزند تعدادی از خصوصیات پدر و تعدادی از خصوصیات مادر را با هم به ارث ببرد و از شبیه شدن تام فرزند به تنها یکی از والدین جلوگیری میکند. [10]
حال میتوانیم اینگونه بیان کنیم که: الگوریتم ژنتیک ابزاری میباشد که توسط آن ماشین میتواند مکانیزم انتخاب طبیعی را شبیه سازی نماید. این عمل با جستجو در فضای مسأله جهت یافتن جواب برتر و نه الزاماً بهینه صورت میپذیرد.[13] الگوریتم ژنتیک را میتوان یک روش جستجوی کلّی نامید که از قوانین تکامل بیولوژیک طبیعی تقلید می کند.[3] در واقع الگوریتمهای ژنتیک از اصول انتخاب طبیعی داروین برای یافتن فرمول بهینه جهت پیشبینی یا تطبیق الگو استفاده میکنند. الگوریتمهای ژنتیک اغلب گزینه خوبی برای تکنیکهای پیشبینی بر مبنای رگرسیون[11] هستند.[10]
ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است
متن کامل را می توانید در ادامه دانلود نمائید
چون فقط تکه هایی از متن برای نمونه در این صفحه درج شده است ولی در فایل دانلودی متن کامل همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند موجود است
بهینه سازی وزنی و کمانشی پوسته های تقویت شده کامپوزیتی لایه ای با الگوریتم ژنتیک
دانلود رایگان اصل مقاله انگلیسی
عنوان انگلیسی مقاله:A Reliability-Centered Approach to an Optimal Maintenance Strategy in Transmission Systems Using a Genetic Algorithm
عنوان فارسی مقاله:
روش مبتنی بر قابلیت اطمینان برای استراتژی تعمیر و نگهداری بهینه در سیستمهای انتقال، با استفاده از الگوریتم ژنتیک
سال انتشار:2011
تعداد صفحات انگلیسی:9
تعدادصفحات فارسی به فرمت ورد:26
Abstract
Electric power transmission utilities try to maximize profit by reducing electricity supply costs and operation costs while maintaining their reliability. Developing maintenance strategies is one of the effective ways to achieve these profitable goals. The reliability-centered maintenance approach is a key method in providing optimal maintenance strategies. It considers the tradeoffs between the upfront maintenance costs and the potential costs of reliability losses. Since a transmission system is a group of different kinds of equipment and the reliability of the electric facilities varies with time, an equipment state model using a modified semi-Markov chain is proposed. In addition, a genetic algorithm is used to find the optimal maintenance strategies from a large class of possible maintenance scenarios. These optimal maintenance strategies have been tested on an IEEE 9-bus system and an IEEE 118-bus system; the results show that the proposed method minimizes the total expected costs
چکیده
شرکتهای انتقال برق تلاش میکنند سود خود را با کاهش هزینه تولید برق و هزینه بهره برداری و حفظ قابلیت اطمینان، ماکزیمم کنند. یکی از روشهای موثر برای رسیدن به این اهداف سودآور توسعه استراتژیهای تعمیر و نگهداری است. روش تعمیر و نگهداری مبتنی بر قابلیت اطمینان،یک روش کلیدی در میسر ساختن استراتژی تعمیر و نگهداری بهینه است. در این روش بین هزینه تعمیر پیشگیرانه و هزینه بالقوه از دست دادن قابلیت اطمینان یک مصالحه صورت میگیرد. از آنجایکه سیستمهای انتقال از تجهیزات مختلفی تشکیل شدهاند و قابلیت اطمینان این تجهیزات با زمان تغییر میکند برای مدل کردن حالت تجهیزات از زنجیره شبه مارکوف استفاده میشود. علاوه بر این از الگوریتم ژنتیک برای پیدا کردن استراتژی تعمیر و نگهداری بهینه از میان تعداد زیادی از سناریوهای تعمیر و نگهداری ممکن استفاده میشود. این استراتژیهای تعمیر و نگهداری بهینه بر روی سیستم 9 باسه و 118 باسه ،IEEE مورد آزمایش قرار گرفتهاند و نتایج آن نشان میدهد که روش ارائه شده کل هزینه مورد انتظار را،مینیمم میکند.