مقدمه ای بر پلاستیک ها
واژه پلاستیک دارای ریشه یونانی و مشتق از واژه یونانی Plastikos به معنی “شکل دادن یا جای دادن درون قالب برای قالبگیری” می باشد. انجمن صنعت پلاستیک SPI یک توضیح بسیار دقیق تر و مشخص تری را در این خصوص ارائه می کند. این انجمن پلاستیک ها را به شرح زیر مشخص و تعریف می کند: “هر یک از گروههای بزرگ و متفاوتی از مواد به طور کامل یا در بخشی از ساختار شیمیایی خود شامل ترکیباتی از کربن با اکسیژن، نیتروژن و هیدروژن و یا سایر عناصر آلی و معدنی می باشند به طوری که در حالت نهایی خود، حالت جامد به خود می گیرند و در چند مرحله از فرایند ساخت و تولید خود نیز، شکل مایع به خود می گیرند و درنتیجه قادر به تشکیل اجسامی سه بعدی در شکل های گوناگون می باشند که فرایند شکل دادن آ نها، نتیجه استفاده از گروه های مواد به طور منفرد یا متصل شده به هم در کنار یکدیگر تحت تأ ثیر حرارت و فشار
می باشد.”
یک شیمیدان انگلیسی به نام جوزف پریستلی (Joseph Priestley)، اولین باو واژه لاستیک Rubber را متداول کرد، پس از اینکه او متوجه شد که تکه ای از لاتکس طبیعی بخوبی نوشته های مدادی را پاک می کند. لاستیک طبیعی را در گروه بزرگی از پلیمرها موسوم به “الاستومرها یا کشپارها Elastomers ” می توان جای داد. الاستمرها،مواد پلیمری طبیعی یا سنتتیک می باشند که تا حد %200 طول اولیه خود و در دمای اتاق می توانند کشیده شوند و تقریبا به طور سریعی به طول اولیه خود برگردند.
تاریخچه پلاستیک ها
امروزه تصور زندگی کردن بدون وجود پلاستیک ها بسیار سخت و دشوار می باشد.درفعالیت های روزمره به کالاهای پلاستیکی همانند بطریها، شیشه های عینک، تلفن ها، نایلون ها و بسیاری از اشیا پلاستیکی دیگر وابسته ایم. درهر صورت، بیش از یکصد سال از تاریخچه پلاستیک ها به شکل کنونی در زندگی ما نمی گذرد و صد سال پیش آ نها به صورت امروزی وجود نداشتند. تا مدتها قبل از توسعه پلاستیک های تجاری، برخی از مواد موجود، خواص منحصر به فردی را از خود به نمایش گذارده اند. اگر چه پلاستیک ها قوی، نیمه شفاف، دارای وزن سبک می باشند وقابلیت قالبگیری دارند، فقط تعداد بسیار اندکی از مواد وجود دارند که چنین خواصی را به صورت درهم آمیخته با هم و با کیفیت مطلوب ازخود نشان می دهند. امروزه از این مواد، به عنوان پلاستیک های طبیعی نامبرده می شود.
پلاستیک های طبیعی در طی قرون متمادی از ترکیب و تلفیق خواص زیر بهره مند شده اند: وزن سبک، استحکام مکانیکی، مقاومت در برابر نفوذ آب، مات بودن و نیم شفافیت و قابلیت قالبگیری. توانایی بالقوه آ نها آ شکار بود ولیکن آ نها موادی بودند که جمع آوری شان دشوار بود یا فقط در حجم ها و یا ابعاد محدود در دسترس بودند. در سرتاسر دنیا، افراد بسیاری تلاش کردند تا پلاستیک های طبیعی را بهبود بخشیده، بهینه سازند و یا اینکه جایگزینها یی را برای آ نها پیدا کنند.
در فرایند ساخت و تولید پلاستیک های طبیعی اصلاح شده، مواد خام طبیعی همانند بذرهای پنبه یا کتان یا لاستیک صمغی به شکل های جدید و بهتری مبدل شدند. سلولوئید مزایا و کیفیت افزون تری نسبت به شاخ داشت که برتری آ ن را در عمل نشان می داد. ولیکن مواد اصلاح شده هنوز دو نخستین جزء تشکیل دهنده شان بر پایه منابع طبیعی استوار بودند.تا قبل از توسعه باکلیت امکان ساخت ماده ای که بتواند در کارخانه تهیه و ساخت شود و در عین حال با طبیعت رقابت کند، وجود نداشت. باکلیت، دریچه های توسعه گروهی از پلیمرهای سنتتیک را باز کرد که برای فراهم کردن شرایط خاص، تنظیم و طراحی شدند.
کاوش و تحقیق برای مواد بهبود یافته تا به امروز ادامه دارد. بسیاری از الیاف جدید نتیجه تلاش برای ساخت ابریشم مصنوعی(Artificial silk) می باشد. مواد مرکب (Compositematerials) هم اکنون در کلیه کاربردها یی که قبلا مخصوص فلزات بود، مورد استفاده قرار می گیرد. امکانات برای یافتن جانشین های جدید به نظر بی انتها و پایان ناپذیر می ایند.
سیر تکاملی پلاستیک ها
پلاستیک های طبیعی<a href="http://www.honaretarahi.com/all-pages/learn/plastic-evolution.htm#مواد_طبیعی_اصلاتعداد صفحات پایان نامه: 110 صفحه
دانلود متن کامل پایان نامه مقطع کارشناسی با فرمت ورد word
فهرست مطالب
عنوان
فهرست علائم
فهرست جداول
فهرست اشکال
چکیده
فصل اول
مقدمه و مطالعات پیشین
1-1 مقدمه و مروری بر تحقیقات گذشته
1-1-1 مدل آیرودینامیکی
فصل دوم
معادلات حاکم و روش حل عددی
2-1 مقدمه
2-2 محاسبات لایه مرزی
2-2-1 محاسبات لایه مرزی آرام
2-2-2 محاسبات ناحیه گذرا
2-2-3 محاسبات لایه مرزی درهم
2-2-4 روش محاسبه درگ
2-2-5 معیار جدایش
فصل سوم
الگوریتم و برنامه به همراه ورودی و خروجی های برنامه
3-1 روند محاسبه درگ
3-2 الگوریتم محاسبات لایه مرزی آرام
3-3 الگوریتم محاسبات ناحیه گذرا
3-4 الگوریتم محاسبات لایه مرزی درهم و ضریب درگ
3-5 برنامه کامپیوتری به زبان فرترن
3-6 ورودی و خروجی های برنامه برای پروفیل های بدنه شماره 1 تا 7
3-6-1 ورودی برنامه برای پروفیل بدنه شماره 1
3-6-2 خروجی برنامه برای پروفیل بدنه شماره 1
3-6-3 ورودی برنامه برای پروفیل بدنه شماره 2
3-6-4 خروجی برنامه برای پروفیل بدنه شماره 2
3-6-5 ورودی برنامه برای پروفیل بدنه شماره 3
3-6-6 خروجی برنامه برای پروفیل بدنه شماره 3
3-6-7 ورودی برنامه برای پروفیل بدنه شماره 4
3-6-8 خروجی برنامه برای پروفیل بدنه شماره 4
3-6-9 ورودی برنامه برای پروفیل بدنه شماره 5
3-6-10 خروجی برنامه برای پروفیل بدنه شماره 5
3-6-11 ورودی برنامه برای پروفیل بدنه شماره 6
3-6-12 ورودی برنامه برای پروفیل بدنه شماره 7
3-6-13 خروجی برنامه برای پروفیل بدنه شماره 6و7
فصل چهارم
ارائه نتایج و بحث و مقایسه
4-1 مقدمه
4-2 نتایج و بحث برای پروفیل بدنه شماره 1
4-3 نتایج و بحث برای پروفیل بدنه شماره 2
4-4 نتایج و بحث برای پروفیل بدنه شماره 3
4-5 نتایج و بحث برای پروفیل بدنه شماره 4
4-6 نتایج و بحث برای پروفیل بدنه شماره 5
4-7 نتایج و بحث برای پروفیل بدنه شماره 6و7
4-8 نمودارهای مربوط به پروفیل بدنه شماره 1
4-9 نمودارهای مربوط به پروفیل بدنه شماره 2
4-10 نمودارهای مربوط به پروفیل بدنه شماره 3
4-11 نمودارهای مربوط به پروفیل بدنه شماره 4
4-12 نمودارهای مربوط به پروفیل بدنه شماره 5
4-13 مقایسه ضریب درگ
فصل پنجم
نتیجه گیری و پیشنهادات
5-1 نتیجه گیری
5-2 پیشنهاداتی برای تحقیقات آینده
فصل اول
1-1 مقدمه و مروری بر تحقیقات گذشته
در طراحی بدنه ایرشیپها و زیر دریائیها نکات زیادی مورد توجه قرار میگیرد که مهمترین آنها قدرت جلوبرندگی است که به مقدار زیادی بستگی به درگ اصطکاکی روی بدنه ایرشیپ دارد و 3/2 درگ کل را شامل میشود. کاهش کوچکی در این درگ باعث صرفه جویی قابل توجهی در سوخت میشود و یا میتواند باعث افزایش ظرفیت حمل و ابعاد ایرشیپ شود.
اولین بهینه سازی عددی شکل، توسط پارسنز انجام شده است. روش محاسبه در قالب یک پنل کد میباشد که با یک روش لایه مرزی کوپل شده است. زدان یک توزیع محوری از چشمه و چاه را برای نشان دادن میدان جریان اطراف یک جسم معرفی میکند. قدرت (شدت) به صورت خطی روی هر المان طول توزیع میشود.
در روند محاسباتی آیرودینامیکی ابتدا یک بدنه دوار با ماکزیمم قطر ثابت و نسبت فایننس ثابت تعریف میشود.پروفیل بدنه و توزیع سرعت جریان غیر لزج توسط روشهای غیر مستقیم حل جریان پتانسیل بدست میآید. پروفیل این بدنه باید به گونهای باشد که در جریان یکنواخت موازی با محور بدنه، لایه مرزی دچار جدایش نشود. با این قید، درگ توسط تغییر در شکل پروفیل بدنه کاهش مییابد. محدودیت در عدم جدایش لایه مرزی باعث حذف درگ فشاری میشود و درگ کلی منحصر به نیروهای ویسکوز در لایه مرزی میشود. لایه مرزی به سه ناحیه آرام گذرا و درهم تقسیم میشود. برای محاسبه لایه مرزی آرام از متد توویتس استفاده شده که بر اساس رابطۀ مومنتوم میباشد. ناحیه گذرا در محاسبات به صورت یک نقطه در نظر گرفته میشود که در آن ضریب شکل به طور ناگهانی از آخرین مقدار در ناحیه آرام به اولین مقدار در ناحیه درهم تغییر میکند. از آنجا که محل گذر به عواملی مانند: زبری سطحی، سر و صدا، لرزش و غیره بستگی دارد که کنترل آنها مشکل است در بیشتر تحقیقات این ناحیه را به صورت دلخواه بین سه تا ده درصد طول بدنه در نظر میگیرند.
محاسبات لایه مرزی مغشوش بر اساس یک روش ساده انتگرالی معادله مومنتوم بنا شده است، که توسط شینبروک و سامنر برای جریان با تقارن محوری بدست آمده است. از آنجا که لایه مرزی مجاز به جدایش نیست درگ از نقصان مومنتوم در انتهای لایه مرزی محاسبه میشود.
حل این مسأله در ساخت اژدرها، زیر دریائیها و ایرشیپها مورد استفاده قرار میگیرد. بعضی از این گونهها پروفیل بدنه را به صورت یک یا دو چند جملهای از درجات مختلف نشان میدهند و شامل پارامترهایی مانند شعاع در دماغه و انتهای دم محل نسبی قطر ماکزیمم و شعاع طولی در آن نقطه و شیب دم هستند. بوسیله تغییر در بعضی یا همه این پارامترها در شکلهای مختلف درگ کاهش یافته است. دیگران سعی کردهاند که مستقیما از کپی پروفیل بدنه ماهیهای پرسرعت و پرندگان این کار را دنبال کنند. نتیجه تمام این تلاشها منجر به طبقه بندی بدنه هایی با درگ پایین شده است و گرچه از نظر شکل متفاوت هستند ولی ضریب درگهایی خیلی شبیه به هم دارند این بدنهها در شکل 1-1 آمده است.
1-1-1 مدل آیرودینامیکی
جریان اطراف بدنه ایرشیپ با زاویه حمله صفر را به کمک روش سوپر پوزیشن بر روی یک سری توزیع چشمه و چاه که روی محور بدنه و بصورت المانهایی بطول و با توزیع شدتی که توسط یک پاره خط مستقیم و روی المان قرار دارد تخمین میزنیم.
خط محوری چشمه و چاه به 20 المان با طول مساوی و در نتیجه به 21 نقطه انتهایی تقسیم میشودکه هر المان توزیع شدت خطی دارد (شکل1-3).با مشخص کردن شدتها در 21 نقطه انتهایی توزیع شدت در همه جا تعریف شده است. پروفیل بدنه بوسیله ی تغییر در مقدار شدت این 21 نقطه انتهایی تغییر میکند. ترکیبات جدیدی از این 21 شدت تولید میشود که در قالب پایان نامه کارشناسی ارشد رضا حسن زاده ارائه شده است. ضریب درگ با استفاده از محاسبات لایه مرزی در نزدیک سطح بدنه بدست میآید که محاسبات لایه مرزی آرام و درهم و همچنین ناحیه گذرا که در این تحقیق بررسی میشود بطور مفصل در قسمتهای بعدی شرح داده خواهد شد.
این بدنه جدید به عنوان مبنا قرار میگیرد و میتواند در یک پروسه ی تکاملی بهینه سازی شود تا به پروفیل با کمترین درگ دست یابیم.در چهل سال اخیر سیستمهای حل مسأله ی بهینه سازی که بر اساس تکامل و وراثت بنا شدهاند مورد توجه قرار گرفتند،استراتژی تکامل ریخنبرگ]6 [یکی از این روشهامیباشد.روش قدرتمند دیگری که بر پایه تکنیکهای هوش مصنوعی میباشد و قابل استفاده در فضاهای عملکرد بزرگ و توابع چند بعدی و چند وضعیتی (دارای چندین مینیمم)و غیر خطی میباشد، روش الگوریتم ژنتیک است.
فصل دوم
معادلات حاکم وروش حل عددی
2-1 مقدمه
مقاومت ویسکوز بدنه اغلب از حل لایه مرزی محاسبه میشود که برای حل لایه مرزی نیاز به دانستن توزیع سرعت در لبه لایه مرزی میباشد که از حل جریان پتانسیل بدست میآید. لایه مرزی به سه قسمت آرام،گذرا و درهم تقسیم میشود. براساس معادله مومنتوم در شرایط جریان پایدار،دوبعدی،تراکم ناپذیر وویسکوز با گرادیان فشار در جهت x داریم.
-2-2 محاسبات ناحیه گذرا
پیش بینی تئوری ناحیهای که گذر از لایه مرزی آرام به درهم رخ میدهد، به عنوان یکی ازمسائل پیچیده و مشکل در مکانیک سیالات میباشد زیرا ناحیه گذرا به فاکتورهای زیادی مــانند سروصـدا،لرزش، محیـط، زبری سطحی بدنه وگرادیان فشار سطحی بستگی دارد که تعیین اثرات آنها روی ناحیه گذرا مشکل است. اولین تحقیقات جدی در این زمینه در اواخر قرن نوزدهم وتوسط رینولدز صورت گرفت.تحقیقات دیگری توسط گرانویل، کربتری صورت گرفت و به خاطر ناتوانی این متدها در بیان تاثیرات سطح بدنه ومحیط روی پدیده گذر تعدادی از محققان به صورت دلخواه ناحیه گذرا را بین سه تا ده درصد طول بدنه از دماغه در نظرگرفتند که در این روش نیز از همین تجربه استفاده شده است. ناش این ناحیه را به صورت یک نقطه ودرسه درصد طول بدنه فرض کرده است. در ناحیه گذرا چند تغییر اساسی در لایه مرزی رخ میدهد.این تغییرات به صورت تغییر در ضخامت جابجایی و ضخامت مومنتوم نشان داده میشودکه منجر به کاهش ضریب شکل میشود. باجایگزین کردن ناحیه گذر به صورت یک نقطه ناش توانست روش مفیدی برای محاسبه مقادیر و در آغاز لایه مرزی آرام بدست آورد.مقدار در طول ناحیه گذر تغییر نمیکند در حالیکه مقدار در شروع لایه مرزی درهم از رابطه تعادلی ناش بدست میآید.
مقدمه :
ایران کشور ما دارای منابع سرشار نفت و گاز میباشد و چنانکه بر همه روشن است مقادیر عظیم گازهای طبیعی حاصل از استخراج نفت تا همین چند سال بیش بدون هیچگونه استفاده سوزانده شده و از بین میرفت. بنابراین با وجود گاز طبیعی فراوان در ایران و در نتیجه در دسترس بودن و ارزانی آن و سوختن تمیز با ارزش حرارتی قابل ملاحظه آن همه اینها و خیلی خواص دیگر میتواند انسان را بر آن دارد که از گاز نیز مثل سایر مواد سوختنی حاصل از نفت درسوخت ماشینها و دستگاههای سوختی استفاده کنند بطورکلی در دنیا امروزه مهمترین سوخت مورد استفاده در انواع موتورهای درون سوز شامل : بنزین ، گازوئیل، گاز و گاز مایع میباشند که همه از ترکیبات هیدرکربورها میباشند.که میزان استفاده از هر کدام از مواد سوختنی فوق در هر منطقه در درجه اول به فراوانی و ارزانی بستگی دارد.
چکیده :
هدف از این بررسی آشنائی به خواص گاز مایع و امکان استفاده از آن در موتورهای درون سوز میباشد. و چنانکه خواهیم دید موتورهای گاز مایع سوز شبیه انواع بنزینی است. ولی نظر به سوخت ویژهای که در این موتورها بکار میرود ، نیاز به برخی و سایل و ابزاری مخصوص بخو د دارد . مطالب مورد بحث در این مجموعه صرفا یک بررسی مقدماتی جهت شناسایی ساختمان سیستم سوخت رسانی موتورهای گاز مایع سوز و نحوه کارآنها میباشد .
که در ادامه این بحث به بررسی کامل انواع سوخت های گازی مورد استفاده در موتورهای بنزینی و همچنین به نحوه کار موتورهای بنزینی و گازی میپردازیم که همچنین به بررسی انواع آلایندههای موجود در موتورهای بنزینی و گازی و همچنین مقایسه بین آنها از نظر میزان آلایندهها و همچنین به بررسی تاثیر گاز سوز کردن موتورهای بنزینی از نظر عملکرد موتور و مقایسه بین موتورهای بنزینی و گازی از نظر عملکرد میپردازیم که به صورت یک سری نمودارها و دادههای آماری به دست آمده از یک سری منابع ، آورده شده و در کل به نتیجه گاز سوز کردن موتور میپردازیم و در پایان یادآور میشویم که در صورت گاز سوز شدن صحیح اتومیبلها کارکرد آنها تفاوت چشم گیری نکرده و قدرت و کشش ماشین حدود 5 درصد نسبت به بهترین حالت کار با بنزین ( که معمولا ماشینها هیچ وقت در این حالت نمیباشد) پائین میآید که به هیچ وجه محسوس نمیباشد.
عوامل قابل اهمیت در انواع سوخت :
-بایستی دارای ارزش حرارتی قابل ملاحظهای باشد
-درحرارتهای کم نیز بتواند بصورت بخار در آیند
-بخار سوخت بتواند با مخلوط مناسب اکسیژن فوراً بسوزد
-تولیداتی که از احتراق چنین سوختهایی حاصل میشود بایستی زیان آور نبوده و برای سلامت محیط زیست خطرناک نباشد
-آنها را بتوان در شرایط طبیعی حمل و نقل کرده ، چه از نظر سادگی عمل و چه از نظر اصول ایمنی
– تولید آنها از نظر اقتصادی مناسب باشد.
-سیستم مصرف مصرف کننده اقتصادی باشد. [1]
1-2- احتراق سوخت هیدروکربنه :
سوختن بطورعموم عبارت است از ترکیب با اکسیژن که به منجر به ایجاد محصولی بنام اکسید میشود. سوختن ممکن است خیلی سریع و یا کند باشد. مثلا زنگ زدگی آهن به نتیجه ترکیب آهن با اکسیژن بمدت طولانی است و یا سوختن ذغال چوب خیلی سریع انجام میشود.
در موتورهای درون سوز نیز ترکیب ماده سوختنی با اکسیژن اتفاق میافتد و نتیجه تولید اکسیدهای کربن که اغلب شامل منواکسید و دی اکسید کربن و همین طور مقداری بخار آب و حرارت میباشد.[1] مانند :
CO2+2H2O+Q CH4+2O2 :متان
C8H18+12.5O2 8CO2+9H2O+Q : اکتان
1-3- انواع سوخت موتورهای درون سوز :
معمولترین سوختهای رایج در موتورهای درون سوز، عبارت از، بنزین ، نفت ، گاز و گاز مایع و گازوئیل میباشد. که چهار نوع اول در موتورهائی که با سیستم جرقه شمع کار میکند مورد استفاده قرار میگیرند و گازوئیل نیز سوخت موتورهای دیزل را شامل میشود. [1]
1-4- انتخاب صحیح مخلوط سوخت :
باید دانست که 23 درصد حجم هوا را اکسیژن تشکیل میدهد، که در سوختن تاثیر دارد و 77 درصد بقیه شامل نیتروژن و سایر گازها است که در عمل احتراق تاثیری ندارد. البته نیتروژن در حرارتهای بالا تا حدودی میسوزد و ایجاد اکسیدهای ازت کرده، که در آلودگی محیط زیست تاثیر بسزایی دارند.
بطورکلی یک مخلوط سوخت وهوا به نسبت 1 : 15 با در نظر گرفتن وزن صحیح آنها یک احتراق . کامل و طبیعی دارد. در صورتیکه مخلوط از نظر سوخت قوی تر باشد آنرا غنی و اگر هوا بیشتر باشد آنرا رقیق میگویند که مخلوط سوختهای غنی را میتوان از ایجاد دوده در اگزوز، کاهش یا ضعف قدرت و بالاخره گرم کردن موتور تشخیص داد. همینطور برای شناسائی مخلوط رقیق میتوان از ایجاد شدن Back f iring در مدخل ورودی گاز و کاربراتور که مهمترین عامل شناسائی این پدیده است، و همچنین دیر روشن شدن موتور ، ضعیف شدن قدرت موتورو بالاخره گرم کردن به این موضوع پی برد.
مقدمه و تاریخچه :
امروزه در صنعت اتومبیل سازی حفظ ایمنی سرنشینان خودرو فوق العاده مورد توجه قرار گرفته است . با توجه به اینکه سیستم ترمز مهمترین بخش ایمنی خودرو محسوب می گردد ، در چند ساله اخیر پیشرفتهای زیادی در این زمینه انجام گرفته است . جدیدترین این پیشرفتها پیدایش سیستم ترمز ضد قفل ABS می باشد . در این پروژه هدف آن است که این نسل از ترمزها مورد بررسی قرار گیرد تا ان شاءالله زمینه ای برای ورود این تکنولوژی به ایران فراهم شود . این ترمزها به سبب پیچیدگی مکانیزمشان هنوز مورد توجه طراحان داخلی قرار نگرفته است که یکی از دلایل آن عدم اطلاعات کافی و عدم آشنائی با این سیستم می باشد . امید است این پروژه مقدمه ای برای قدمهای بعدی در راه ساخت و طراحی این تکنولوژی در ایران باشد .
در این پروژه ابتدا تاریخچه ای از پیدایش ترمزها ارائه خواهد شد . در فصل دوم به بررسی سیستم ترمز معمولی شامل کاسه ای و دیسکی و سایر اجزای جانبی آن می پردازیم .
در فصل سوم سیستم ترمز پنوماتیکی مورد بررسی قرار می گیرد و سپس در فصل چهارم و سیستم ترمز ضد قفل ABS و سپس مقایسه ای بین فصول دوم و سوم خواهیم داشت تا برتریها و معایب هرکدام نسبت به یکدیگر مشخص شود و در فصول بعدی مطالب مربوط به طراحی و محاسبه نیروهای لازم آورده خواهد شد . نخست تاریخچه ای از پیدایش ترمزهای اولیه تا کنون بیان می کنیم :
اولین موتور احتراقی در سال 1885 بوسیله بنز ساخته شد . توقف این اتومبیل بوسیله یک لقمه ترمز بر روی محور دنده هرزگرد انجام می گرفت . بعدها که اتومبیل تکمیل شد و سرعت آن افزایش یافت و از لحاظ وزن سنگین تر شد ، ترمزهای مخصوصی برای آن طرح ریزی شد .
تا سال 1900 ترمز دستی شامل ترمز ساده ای که مستقیماً با سطح لاستیکهای توپر اصطکاک پیدا می کرد استفاده می شد. اما از این سال به بعد ترمزی ابداع شد که توسط پدال عمل می کرد و عبارت از یک نوار فلزی بود که در خارج بر روی چرخ دندانه دار محور محرک عقب نصب شده بود و بصورت استوانه ای آن را احاطه می کرد .
در همین سال لنکستر(Lanchester) ترمز و کلاچ را در یک مجموعه مخروطی شکل متشکل کرد و در اولین ماشین ساخت انگلستان بکار گرفت .
در سال 1905 ، انتقال حرکت بوسیله چرخ دنده و محور جای انتقال حرکت توسط زنجیر یا تسمه را گرفت و عمومیت پیدا کرد و بیشتر اتومبیلها با پدالی که انتقال حرکت را به ترمز تأمین می کرد مجهز شده بودند .
در سال 1910 میلادی ترمزهای بیشتر ماشینهای امریکائی روی چرخهای عقب تأثیر می کرد . در این سالها بسیاری از عوامل مربوط به ترمز، مانند اهمیت چسبندگی لاستیک به جاده اثرات چرخ قفل شده و غیره بخوبی شناخته شده بود و این مطلب محقق شده بود که جهت اعمال ترمز صحیح هر چهار چرخ بایستی ترمز شود ، و کوشش و اثر ترمز با نسبتی متناسب بین چرخ جلو و چرخ عقب سهیم باشد . با ترمز شدن چهارچرخ است که بدون خطر لیز خوردن ماشین ، فاصله توقف به نصف تقلیل می یابد . سالها طول کشید تا موضوع ترمز چهارچرخ مورد قبول عموم قرار گرفت . شکل عمده این بود که آرایشی برای ترمز ترتیب داده شود که با تشکیلات و اتصالات فرمان و چرخهای جلو و بطور کلی با تشکیلات سیستم فرمان و هدایت ماشین تداخل پیدا نکند .
در فاصله دو جنگ جهانی اول و دوم ، احتیاج به ترمز تا حدودی بیشتر احساس شد . چون سرعت ماشین ها رو به افزایش رفت همچنین بر تراکم ترافیک نیز افزوده شد .
نظر به اینکه رانندگان به ترمز قوی احتیاج داشتند و از طرفی ترمز قوی در چرخهای عقب ، موجب سرخوردن ماشین می شد ، فشار زیادی به طراحان ترمز وارد می آمد تا ترمز چرخهای جلو را تکمیل کنند . در نتیجه ، بعد از گذشت ده سال از جنگ اول ، استعمال ترمز در هر چهار چرخ ، عمومیت پیدا کرد . ظهور ترمز در چرخهای جلو ، پس از جنگ ابتدا در خودروهای بزرگ و گرانقیمت مانند هیسپانو ـ سوئیزا و هاچیکس(Hotchikss) و سپس درخودروهای سبک و ارزان قیمت صورت پذیرفت . ساده ترین راه برای اعمال ترمز جلو استفاده از سیستم هیدرولیک بود . ولی در طی سالیان متمادی اکثریت خودروها از سیستم مکانیکی استفاده می کردند تا اینکه مزایای هیدرولیک برای همه روشن شد . چرخهای اتومبیل بدون احتیاج به دندهای پیچیده ترمز می شدند . جبران سائیدگی لنتها بطور خودکار صورت می گرفت و تلفات اصطکاک بمراتب کمتر از سیستم مکانیکی بود.
در سال 1911 ، اتومبیلی با ترمزهای هیدرولیکی برای چهارچرخ به نمایش گذاشته شد . اما در آن تردیدهائی وجود داشت بنابراین بصورت ابداعی باقی ماند . چندی بعد شخصی بنام M-Loughead سیستمی عملی اختراع کرد که در سال 1917 به ثبت رسید .
در کشور انگلستان در سال 1924 ، ابتدا ترمز لاک هید هیدرولیک در ماشینهای «بین»(Bean) بکار برده شد .
در سال 1924 ترمزهای مکانیکی از چرخهای جلو برداشته شد و در 1925 نیز از چرخهای عقب حذف شد و جای خود را به ترمزهای هیدرولیک واگذار کرد.
نظر به اینکه برای ترمزهای ماشینهای سنگین به نیروی زیادی احتیاج بود بنابراین سرووهای مختلف طراحی شدند . در سال 1924 ، دواندر (Dewandre) دستگاه سرووئی ساخت که برای بکار انداختن آن از خاصیت خلأ استفاده شده بود .
دهه 1930 ، ظهور متخصصینی را به خود دید که سردسته آنها در ساخت ترمزهای مکانیکی ، بندیکس و گیرلینگ بودند ، و در ساخت ترمزهای هیدرولیک ، لاک هید بود .
در طول دهه 1930 ، بتدریج هیدرولیک جای ترمز مکانیکی را گرفت ظرف مدت ده سال تلاش برای توسعه ترمز هیدرولیک شدت یافت بخصوص هنگامی که تعلیقات مستقلی برای ترمز جلو بکار رفت . در سال 1935 ، بعضی از مدلهای ساخت انگلستان دارای دو سیلندر اصلی پشت سرهم شد . در این سیستم ، یک قسمت از سیلندر اصلی ، ترمزهای جلو را بکار می انداخت و قسمت دیگر از طریق خط کاملاً مجزای دیگری ، ترمزهای عقب را .
بعد از سال 1930 ، چندین سال ، مکانیسم ترمز بدون تغییر باقی ماند و عملاً تمام ترمزها از نوع پرویا بندیکس ـ پرو بودند .
در سال 1948 ، گیرلینگ اولین سیستم ترمز هیدرولیک و ترمزهای اتومبیل را ارائه کرد و چند سالی هم تولید ترمزهای هیدرواستاتیک ادامه یافت . در این نوع ترمز ، فاصله ای بین کاسه و لنت وجود داشت و بوسیله فنرهائی آنها را در حد تماس نگاه می داشتند تا از تکان خوردن و صدای آن جلوگیری بعمل آید .
در اواسط دهه 1950 ، در وضع عمومی ترمزها تغییر عظیمی صورت گرفت . زیرا در این هنگام آغاز جایگزینی ترمز دیسکی بجای ترمز استوانه ای بود .
در این سال در آمریکا ، شرکت کرایسلر ترمزهای دیسکی « خود نیروزا » و « خود تنظیم ساز » و« نوع صفحه ای » را در ماشینهای نوع « کراون امپریال »(Crown Imperial) خود نصب کرد که بعنوان یک ترمز اضافی و اختیاری بکار می رفت . در انگلستان نیز در سال 1925 ترمز دیسکی دانلوپ در ماشینهای جگوار کورسی بکار رفت . امروزه تمام اتومبیلهای انگلیسی ، به استثنای ماشینهای سبک که حداقل در چرخهای جلو ترمز دیسکی دارند ، در تمام چرخها ، از ترمز دیسکی استفاده می کنند.
مقدمه……………………………………… 1
فصل اول:تاریخچه…………………………….. 2
خلاصه تاریخچه……………………………….. 3
سالنامه……………………………………. 4
آرشیو……………………………………… 6
توان تولید………………………………… 10
شرکتهای تجاری……………………………… 11
انتقال تکنولوژی……………………………. 11
فصل دوم:آشنایی با قیدوبندها…………………. 25
مقدمه…………………………………….. 26
تعریف جیگ و فیکسچرها……………………….. 27
دسته بندی جیگ و فیکسچر……………………… 28
تقسیم جیگ و فیکسچرها ………………………. 28
فصل سوم:انواع روبندها………………………. 30
بوستر…………………………………….. 31
گوه های مخروطی …………………………… 31
روبندهای زانویی……………………………. 31
روبندهای مکانیزه (هیدرولیکی و پنوماتیکی) …….. 32
گیره ها و سه نظام ها……………………….. 32
روبندهای غیر مکانیکی ………………………. 32
روبند مکشی………………………………… 32
روبندچرخشی………………………………… 33
روبند ناخنی……………………………….. 33
روبند بادامکی……………………………… 33
روبند دیسکی دایره ای لنگ……………………. 33
روبند بادامکی اسپیرال………………………. 33
روبند گوه ای………………………………. 34
گوه ای تخت………………………………… 34
فصل چهارم:طراحی جیگ و فیکسچرهای پنوماتیکی(در واحد نمونه سازی) 35
مشاهدات…………………………………… 36
shop demerit………………………………… 38
تسترگان ها………………………………… 39
روبات ها………………………………….. 39
مدارات پنوماتیکی…………………………… 40
طراحی فیکسچرهای جوشکاری پنوماتیکی……………. 41
فصل پنجم :فیکسچرهای کن……………………… 42
فیکسچرهای جوشکاری و فیکسچرهای کنترلی…………. 43
فیکسچرهای کنترل……………………………. 43
فیکسچرهای مدولار پین دار…………………….. 45
گیره های ماشینی بر روی صفحات مغناطیسی………… 45
ششم :بررسی جوانب طراحی……………………… 47
طراحی ابزار……………………………….. 48
بررسی اقتصادی……………………………… 48
اصول اقتصادی بودن طرح………………………. 48
درجات آزادی……………………………….. 48
قاعده1;2,3………………………………… 49
دستگاه مختصات مرجع…………………………. 49
بدنه جیگ و فیکسچرbody………………………. 50
قطعات پیش ساخته……………………………. 50
منابع…………………………………….. 51
نقشه های modeling جیگ
مقدمه:
بهترین راه پیش بینی آینده، ساختن آن است.
این جمله زیبا پیام اراده، عزم و سازندگی دارد. انسان مصمم، عازم و سازنده، مقهور دست سرنوشت نیست بلکه سرنوشتش را خود رقم می زند. این عزم، انسان را از در افتادن در گرداب انفعال خارج نموده و در مقابل تن دادن به روز مرگی رویین تن میگرداند. پس بجاست با گذراندن این دوره ی کارآموزی خود را از لحاظ ارتقای عملی بالا برده تا بتوان میان علوم دانشگاهی گذرانده و نیاز صنعت اشتراکی یافته و به پروراندن آن اشتراکات بپردازیم. این جانب در این دوره ی 240 ساعت با بهره گیری از دانش و تجربه ی صاحبان فن توانستم به آشنایی با اصول اولیه طراحی جیک و فیکسچرها و مدل سازی یک جیگ توسط نرم افزار CATIYA دست یابم و پس از آن با اندازه برداری توسط دوربین ATOS به فایلهای ایجاد شده ی ابر نقاط موجود در سیستم های کامپیوتری دست یافتم و بدین ترتیب با نحوهی مدل کردن فایلهای ابر نقاط آشنا شدم.
خلاصه تاریخچه:
شرکت سایپا دیزل در سال 1342 با انعقاد قرارداد انحصاری با شرکت ماک تراکس و با نام ایران کاوه فعالیت خود را با مونتاژ کامیون های ماک و ساخت انواع تریلر آغاز نمود.
تعداد کامیون های تولیدی ایران کاوه طی مدت همکاری با شرکت ماک تراکس تا سال 1357 به 5700 دستگاه بالغ گردید.
به دنبال توقف تولید کامیون های ماک در سال 1357، شرکت سایپا دیزل به منظور بهره گیری ازظرفیت های موجود در ایجاد اشتغال، مونتاژ سایر وسایل نقلیه در بخش حمل و نقل جاده ای بار و مسافر را در دستور کار خود قرار داد.
در سال 1363 پس از بررسی های انجام شده در خصوص راه اندازی خط جدید تولید کامیون، قرارداد ساخت و تولید ولوو F12 در مدل های 4×6 ، 2×6 و 2×4 با شرکت ولوو تراکس منعقد گردید، انعقاد قرارداد تولید تریلرهای کفی با شرکت گوشا یوگسلاوی، از دیگر اقدامات برجسته سایپا دیزل طی این سال بود.
در روند تولید مطمئن طی سال های 1363 تا 1380، تولید کامیون های ولوو NL12 و F12 به میزان بیش از 1000 دستگاه و با حدود 52% خودکفایی حاصل گردید.
اما در پی وضع استانداردهای زیست محیطی موسوم به استانداردهای یورو توسط اتحادیه اروپایی و عدم تجهیز کامیون های شرکت های حمل و نقل بین المللی ایران به موتورهای دارای این استاندارد آلایندگی، شرکت سایپا دیزل به عنوان رکنی اساسی در صنعت حمل و نقل جاده ای با قریب به نیم قرن تجربه در این صنعت، با درک صحیح از شرایط و با عنایت به نقش خطیر خود در فائق آمدن به بحران حاصل از عدم مجوز تردد کامیون ها در جادههای اروپایی، با هدف بازسازی ناوگان حمل ونقل جاده ای کشور به ویژه در بخش ترانزیت، اقدامات گسترده ای را آغاز نمود و سرانجام پس از انجام بررسی ها و مذاکرات مقدماتی و انعقاد قرارداد جدید با شرکت ولوو تراکس، کامیون های ولوو مدل FH12 و NH12 که هم اکنون مجهز به موتورهای با استاندادرهای آلایندگی یورو 3 می باشد، در خط تولیدی محصولات سایپا دیزل جای گرفتند.
فناوری روز اروپا، کیفیت، ایمنی، راحتی، قدرت و استحکام کامیون های جدید ولوو، اختصاص بالغ بر 90% از سهم بازاردربخش کامیون های کشنده سنگین درسال81 را برای شرکت سایپا دیزل و بازار ایران به ارمغان آورد.
از طرف دیگر خلاء موجود در بخش نیمه سنگین و احساس نیاز مبرم به بازسازی ناوگان فرسوده داخل در این بخش از بازارمعرفی کامیون های به روز ولوو مدل FM9 و رنو MIDLUM را به دنبال داشته تا بدین ترتیب شرکت سایپا دیزل امروزه با تنوع محصول گسترده و با عرضه کامیون در تمامی بخش های سبک، متوسط، نیمه سنگین و سنگین در بیش از 23 مدل و همچنین انواع تریلر و اتاق بار، با سربلندی قادر به پاسخگویی به اطمینان مشتریان و جلب رضایت ایشان باشد.
ظرفیت تولید سایپا دیزل در حال حاضر، ساخت سالانه 20000 دستگاه انواع کامیون و 6000 دستگاه انواع تریلر و اتاق بار می باشد.
سرمایه گذاری و ظرفیت سازی در زمینه های تولیدی و تکنولوژیک، توسعه و ایجاد شرکت های تابعه، همکاری با شرکت های طراز اول جهانی در صنعت خودروهای تجاری، بازسازی ناوگان فرسوده حمل و نقل داخلی و ترانزیت و عرضه محصولات به روز منطبق با استانداردهای جهانی به بازارهای صادراتی، کسب دو بار عنوان واحد نمونه صنعتی، استقرار سیستم مدیریت یکپارچه و اخذ گواهینامه های تطابق با استانداردهای استقرار سیستم مدیریت یکپارچه و اخذ گواهینامه های تطابق با استانداردهای 20000: 9001 ISD ، 2004: 14001 ISO و 18001 OHSAS و دریافت جایزه های ملی بهرهوری و تعالی سازمانی در سطح تقدیرنامه و کسب عنوان برترین شرکت گروه سایپا نه تنها جایگاه شرکت سایپا دیزل را به عنوان شرکت بلامنازع پیشروی بازار داخلی در بخش کامیون و تریلر تثبیت نموده بلکه دورنمای روشنی را در بازارهای منطقه برای این شرکت ترسیم نموده است.
هم اکنون نیز این شرکت در راستای نوسازی ناوگان حمل و نقل مسافری با ارائه محصولات به روز MIDIBUS و MINIBUS گامی مطمئن در راستای عرضه محصولات مسافری برداشته است.