دانلود مقاله هوش مصنوعی پیرامون شبکه های عصبی

دانلود مقاله هوش مصنوعی پیرامون شبکه های عصبی

تاریخچه
نام هوش مصنوعی در سال ۱۹۶۵ میلادی به عنوان یک دانش جدید ابداع گردید. البته فعالیت درزمینه این علم از سال ۱۹۶۰ میلادی شروع شده بود
تعریف
هنوز تعریف دقیقی که مورد قبول همه دانشمندان این علم باشد برای هوش مصنوعی ارائه شده‌است.اما اکثر تعریف‌هایی که در این زمینه ارایه شده‌اند بر پایه یکی از ۴ باور زیر قرار می‌گیرند:
۱٫ سیستم‌هایی که به طور منطقی فکر می‌کنند .
۲٫ سیستم‌هایی که به طور منطقی عمل می‌کنند .
۳٫ سیستم‌هایی که مانند انسان فکر می‌کنند.
۴٫ سیستم‌هایی که مانند انسان عمل می‌کنند.

 

شاید بتوان هوش مصنوعی را این گونه توصیف کرد:«هوش مصنوعی عبارت است از مطالعه این که چگونه کامپیوترها را می‌توان وادار به کارهایی کرد که در حال حاضر انسان‌ها آنها رابهتر انجام می‌دهند»

به یاری پژوهش‌های گسترده دانشمندان علوم مرتبط، هوش مصنوعی از آغاز پیدایش تاکنون راه بسیاری پیموده‌است. در این راستا، تحقیقاتی که بر روی توانایی آموختن زبانها انجام گرفت و همچنین درک عمیق از احساسات، دانشمندان را در پیشبرد این علم، یاری کرده‌است. یکی از اهداف متخصصین، تولید ماشینهایی است که دارای احساسات بوده و دست کم نسبت به وجود خود و احساسات خود آگاه باشند. این ماشین باید توانایی تعمیم تجربیات قدیمی خود در شرایط مشابه جدید را داشته و به این ترتیب اقدام به گسترش دامنه دانش و تجربیاتش کند.
برای نمونه به رباتی هوشمند بیاندیشید که بتواند اعضای بدن خود را به حرکت درآورد، او نسبت به این حرکت خود آگاه بوده و با سعی و خطا، دامنه حرکت خود را گسترش می‌دهد، و با هر حرکت موفقیت آمیز یا اشتباه، دامنه تجربیات خود را وسعت بخشیده و سر انجام راه رفته و یا حتی می‌دود و یا به روشی برای جابجا شدن، دست می‌یابد، که سازندگانش، برای او، متصور نبوده‌اند.
هر چند مثال ما در تولید ماشینهای هوشمند، کمی آرمانی است، ولی به هیچ عنوان دور از دسترس نیست. دانشمندان، عموما برای تولید چنین ماشینهایی، از تنها مدلی که در طبیعت وجود دارد، یعنی توانایی یادگیری در موجودات زنده بخصوص انسان، بهره می‌برند.
آنها بدنبال ساخت ماشینی مقلد هستند، که بتواند با شبیه‌سازی رفتارهای میلیونها یاخته مغز انسان، همچون یک موجود متفکر به اندیشیدن بپردازد.

مباحث هوش مصنوعی پیش از بوجود آمدن علوم الکترونیک، توسط فلاسفه و ریاضی دانانی نظیر بول (Boole) که اقدام به ارائه قوانین و نظریه‌هایی در باب منطق نمودند، مطرح شده بود. در سال ۱۹۴۳، با اختراع رایانه‌های الکترونیکی، هوش مصنوعی، دانشمندان را به چالشی بزرگ فراخواند. بنظر می‌رسید، فناوری در نهایت قادر به شبیه سازی رفتارهای هوشمندانه خواهد بود.

با وجود مخالفت گروهی از متفکرین با هوش مصنوعی که با دیده تردید به کارآمدی آن می‌نگریستند تنها پس از چهار دهه، شاهد تولد ماشینهای شطرنج باز و دیگر سامانه‌های هوشمند در صنایع گوناگون هستیم.

هوش مصنوعی که همواره هدف نهایی دانش رایانه بوده‌است، اکنون در خدمت توسعه علوم رایانه نیز می‌باشد. زبانهای برنامه نویسی پیشرفته، که توسعه ابزارهای هوشمند را ممکن می‌سازند، پایگاههای داده‌ای پیشرفته، موتورهای جستجو، و بسیاری نرم‌افزارها و ماشینها از نتایج پژوهش‌های هوش مصنوعی بهره می‌برند.
در سال ۱۹۵۰ آلن تورینگ) َAlain (Turing، ریاضی دان انگلیسی، معیار سنجش رفتار یک ماشین هوشمند را چنین بیان داشت: «سزاوارترین معیار برای هوشمند شمردن یک ماشین، اینست که آن ماشین بتواند انسانی را( و حتی یک محقق) توسط یک پایانه (تله تایپ) به گونه‌ای بفریبد که آن فرد ( و حتی یک محقق) متقاعد گردد با یک انسان روبروست.»

در این آزمایش شخصی از طریق ۲ عدد پایانه (رایانه یا تله تایپ) که امکان برقراری ارتباط و گپ‌زنی را برای وی فراهم می‌کنند با یک انسان و یک ماشین هوشمند، بطور همزمان به پرسش و پاسخ می‌پردازد. در صورتی که وی نتواند ماشین را از انسان تشخیص دهد، آن ماشین، هوشمند است. خلاصه ابنکه مورد تحقیق قرار گیرد و محقق نتواند دریابد در آن طرف انسان قرار دارد یا کامپیوتر.
آزمایش تورینگ از قرار دادن انسان و ماشین بطور مستقیم در برابر یکدیگر اجتناب می‌کند و بدین ترتیب، چهره و فیریک انسانی مد نظر آزمایش کنندگان نمی‌باشد. ماشینی که بتواند از پس آزمون تورینگ برآید، از تفکری انسانی برخوردار است.

آزمایش تورینگ مدل سازی نحوه تفکر انسان، تنها راه تولید ماشینهای هوشمند نیست. هم اکنون دو هدف برای تولید ماشینهای هوشمند، متصور است، که تنها یکی از آن دو از الگوی انسانی جهت فکر کردن بهره می‌برد:
• سیستمی که مانند انسان فکر کند. این سیستم با مدل کردن مغز انسان و نحوه اندیشیدن انسان تولید خواهد شد و لذا از آزمون تورینگ سر بلند بیرون می‌آید. از این سیستم ممکن است اعمال انسانی سر بزند.
• سیستمی که عاقلانه فکر کند. سامانه‌ای عاقل است که بتواند کارها را درست انجام دهد. در تولید این سیستمها نحوه اندیشیدن انسان مد نظر نیست. این سیستمها متکی به قوانین و منطقی هستند که پایه تفکر آنها را تشکیل داده و آنها را قادر به استنتاج و تصمیم گیری می‌نماید. آنها با وجودی که مانند انسان نمی‌اندیشند، تصمیماتی عاقلانه گرفته و اشتباه نمی‌کنند.

این ماشینها لزوما درکی از احساسات ندارند. هم اکنون از این سیستمها در تولید عامل‌ها در نرم افزارهای رایانه‌ای، بهره گیری می‌شود. عامل تنها مشاهده کرده و سپس عمل می‌کند.
Agent قادر به شناسایی الگوها، و تصمیم گیری بر اساس قوانین فکر کردن خود است. قوانین و چگونگی فکر کردن هر Agent در راستای دستیابی به هدفش، تعریف می‌شود. این سیستمها بر اساس قوانین خاص خود فکر کرده و کار خودرا به درستی انجام می‌دهند. پس عاقلانه رفتار می‌کنند، هر چند الزاما مانند انسان فکر نمی‌کنند.

با وجودی که برآورده سازی نیازهای صنایع نظامی، مهمترین عامل توسعه و رشد هوش مصنوعی بوده‌است، هم اکنون از فراورده‌های این شاخه از علوم در صنایع پزشکی، رباتیک، پیش بینی وضع هوا، نقشه‌برداری و شناسایی عوارض، تشخیص صدا، تشخیص گفتار و دست خط و بازی‌ها و نرم افزارهای رایانه‌ای استفاده می‌شود.

حال در اینجا برای آشنایی، مطالبی در مورد سیستم های خبره،الگوریتم ژنتیک ومنطق فازی مطرح می کنیم وسپس به بررسی شبکه های عصبی می پردازیم.

شایان ذکر است که   این  فایل  حاوی دو مقاله ترجمه شده به صورت مجزا و فشرده بر روی سایت جهت دانلود قرار داده شده است . امید است که توانسته باشیم  رضایت همراهان عزیز را جلب کرده باشیم .



خرید و دانلود دانلود مقاله هوش مصنوعی پیرامون شبکه های عصبی


تحقیق در مورد کمردرد

تحقیق در مورد کمردرد


لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

  

تعداد صفحه:17

مقدمه :

کمردرد به خودی خود یک بیماری نیست بلکه نشانه بیماری است . پیشرفت آن یعنی اینکه چیزی در جایی دچار مشکل شده است ، اگرچه ممکن است همیشه خیلی واضح نباشد که آن چیز چیست .

بیشتر ما در بعضی مواقع از کمردرد رنج می بریم . معمولاً این درد ناخوشایند و طاقت‌فرساست اما خیلی جدی نیست . این ناراحتی بعلت بعضی فشارها و یا صدمات در کمر ایجاد می شود که نبستاً هم به سرعت بهبود می یابد . طرز نشستن یا ایستادن نامناسب ، فشارهای زیاده از حد و مشکلات فرسودگی استخوانها ممکن است حداقل کمی مقصر باشند .

مقدمه :

یک مشکل رو به رشد

ستون مهره ها :

شبکه عصبی :

آسیب دیدگی ستون فقرات در ناحیه کمر :

کمردرد :

درمان کمردرد - اولین قدم :

چگونه درمان می شود ؟

مراقبت از کمر خود

خوابیدن به طرز مناسب :

درمان کمردرد :

داروهای ضد التهاب

 

 



خرید و دانلود تحقیق در مورد کمردرد


کنترل دور موتور القایی با کمک شبکه عصبی

کنترل دور موتور القایی با کمک شبکه عصبی

کنترل دور موتور القایی با کمک شبکه عصبی 

در صورت داشتن سوال با ما تماس بگیرید:

09132399969

09338075778

محمدرضاکیانی

موسسه نوآوران برتر تهران



خرید و دانلود کنترل دور موتور القایی با کمک شبکه عصبی


تحقیق در مورد پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک

تحقیق در مورد پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

  

تعداد صفحه:30

 

  

 فهرست مطالب

 

خلاصه

1- مقدمه

2- تحقق شبکه عصبی

2-1- اصول عملکرد

3- پیاده سازی الگوریتم آموزش ژنتیک4- نتایج تجربی

 

 

خلاصه

مفید بودن شبکه عصبی آنالوگ مصنوعی بصورت خیلی نزدیکی با میزان قابلیت آموزش پذیری                    آن محدود می شود .


 

این مقاله یک معماری شبکه عصبی آنالوگ جدید را معرفی می کند که وزنهای بکار برده شده در آن توسط الگوریتم ژنتیک تعیین می شوند .

اولین پیاده سازی VLSI ارائه شده در این مقاله روی سیلیکونی با مساحت کمتر از 1mm که                      شامل 4046 سیناپس و 200 گیگا اتصال در ثانیه است اجرا شده است .

از آنجائیکه آموزش می تواند در سرعت کامل شبکه انجام شود بنابراین چندین صد حالت منفرد                    در هر ثانیه می تواند توسط الگوریتم ژنتیک تست شود .

این باعث می شود تا پیاده سازی مسائل بسیار پیچیده که نیاز به شبکه های چند لایه بزرگ دارند                عملی بنظر برسد .

 

 

1- مقدمه

شبکه های عصبی مصنوعی به صورت عمومی بعنوان یک راه حل خوب برای مسائلی از قبیل تطبیق الگو     مورد پذیرش قرار گرفته اند .

علیرغم مناسب بودن آنها برای پیاده سازی موازی ، از آنها در سطح وسیعی بعنوان شبیه سازهای عددی           در سیستمهای معمولی استفاده می شود .

یک دلیل برای این مسئله مشکلات موجود در تعیین وزنها برای سیناپسها در یک شبکه                                    بر پایه مدارات آنالوگ است .

موفقترین الگوریتم آموزش ، الگوریتم Back-Propagation است .

این الگوریتم بر پایه یک سیستم متقابل است که مقادیر صحیح را از خطای خروجی شبکه                          محاسبه می کند .

یک شرط لازم برای این الگوریتم دانستن مشتق اول تابع تبدیل نرون است .

در حالیکه اجرای این مسئله برای ساختارهای دیجیتال از قبیل میکروپروسسورهای معمولی                                و سخت افزارهای خاص آسان است ، در ساختار آنالوگ با مشکل روبرو می شویم .

دلیل این مشکل ، تغییرات قطعه و توابع تبدیل نرونها و در نتیجه تغییر مشتقات اول آنها از نرونی به نرون دیگر    و از تراشه ای به تراشه دیگر است و چه چیزی می تواند بدتر از این باشد که آنها با دما نیز                             تغییر کنند .

ساختن مدارات آنالوگی که بتوانند همه این اثرات را جبران سازی کنند امکان پذیر است ولی این مدارات        در مقایسه با مدارهایی که جبران سازی نشده اند دارای حجم بزرگتر و سرعت کمتر هستند .

برای کسب موفقیت تحت فشار رقابت شدید از سوی دنیای دیجیتال ، شبکه های عصبی آنالوگ                 نباید سعی کنند که مفاهیم دیجیتال را به دنیای آنالوگ انتقال دهند .

در عوض آنها باید تا حد امکان به فیزیک قطعات متکی باشند تا امکان استخراج یک موازی سازی گسترده    در تکنولوژی VLSI مدرن بدست آید .

شبکه های عصبی برای چنین پیاده سازیهای آنالوگ بسیار مناسب هستند زیرا جبران سازی نوسانات               غیر قابل اجتناب قطعه می تواند در وزنها لحاظ شود .

 

 



خرید و دانلود تحقیق در مورد پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک


پروژه با عنوان: تشخیص خطای اولیه ترانسفورماتور بر اساس شبکه عصبی

پروژه با عنوان: تشخیص خطای اولیه ترانسفورماتور بر اساس شبکه عصبی

 

 

 

 

 

 

 

حفاظت دیفرانسیل یکی از مهمترین حفاظت های یک ترانسفورماتور قدرت می باشد. تاکنون از تکنیک های متفاوتی برای اعمال حفاظت دیفرانسیل ترانسفورماتورهای قدرت استفاده شده است. از آنجایی که حساسیت حفاظت دیفرانسیل توسط عوامل متعددی تحت تاثیر قرار می گیرد، روش های مختلفی برای تشخیص هر کدام از این حالت ها ارائه شده اند. مهمترین این عوامل عبارتند از: جریان هجومی، اشباع شدن ترانسفورماتور قدرت، اشباع CT ها، عدم تطابق CT ها، تغییر تپ و... در این پروژه برای اولین بار حفاظت دیفرانسیل مبتنی بر روش بازدارنده شاری به کمک شبکه های عصبی بازسازی گردیده و قابلیت‌های این روش در تشخیص شرایط کاری متفاوت ترانسفورماتور بررسی شده است...

پروژه تشخیص خطای اولیه ترانسفورماتور بر اساس شبکه عصبی، مشتمل بر 91 صفحه، تایپ شده، به همراه تصاویر، با فرمت pdf جهت دانلود قرار داده شده و فصل بندی پروژه به ترتیب زیر می باشد:

چکیدهمقدمهآشنایی با ترانسفورماتورکاربرد ترانسفورماتورهاقسمت های مختلف ترانسفورماتورسیستم خنک کننده ترانسفورماتورترانسفورماتور خشکترانسفورماتور روغنیانواع رله های حفاظت در ترانسفورماتور قدرترله بوخهلتسرله دیفرانسیلالگوریتم مورد استفادهروش بازدارنده شاریبه کارگیری شبکه عصبیجمع آوری داده های آموزشیآشنایی با انواع شبکه های عصبیساختار مغزیادگیری در سیستم های بیولوژیکنگرش کلی به شبکه های عصبی مصنوعیتعریف شبکه عصبیمفاهیم اساسی شبکه عصبیمعرفی اصطلاحات و مفاهیم قراردادیکاربرد نمونه شبکه عصبی مصنوعیفواید و معایب شبکه عصبی مصنوعیمراحل مهندسی سیستم ANNشبکه عصبی پرسپترون سادهنتایج شبیه سازینتیجه گیری

جهت خرید پروژه تشخیص خطای اولیه ترانسفورماتور بر اساس شبکه عصبی، به مبلغ فقط 4000 تومان و دانلود آن بر لینک پرداخت و دانلود در پنجره زیر کلیک نمایید.

!!لطفا قبل از خرید از فرشگاه اینترنتی کتیا طراح برتر قیمت محصولات ما را با سایر فروشگاه ها و محصولات آن ها مقایسه نمایید!!

!!!تخفیف ویژه برای کاربران ویژه!!!

با خرید حداقل 10000 (ده هزارتومان) از محصولات فروشگاه اینترنتی کتیا طراح برتر برای شما کد تخفیف ارسال خواهد شد. با داشتن این کد از این پس می توانید سایر محصولات فروشگاه را با 20% تخفیف خریداری نمایید. کافی است پس از انجام 10000 تومان خرید موفق عبارت درخواست کد تخفیف و ایمیل که موقع خرید ثبت نمودید را به شماره موبایل 09016614672 ارسال نمایید. همکاران ما پس از بررسی درخواست، کد تخفیف را به شماره شما پیامک خواهند نمود.



خرید و دانلود پروژه با عنوان: تشخیص خطای اولیه ترانسفورماتور بر اساس شبکه عصبی