پاورپوینت بررسی الگوریتم کلاسترینگ فازی و درس منطق فازی

پاورپوینت بررسی الگوریتم کلاسترینگ فازی و درس منطق فازی

فرمت فایل : power point (قابل یرایش) تعداد اسلایدها : 44

فهرست

مروری بر کلاسترینگمروری بر منطق فازیکلاسترینگ فازی  مروری بر کلاسترینگیادگیری با نظارت – یادگیری بدون نظارتکلاسترینگ در مقابل طبقه بندیتعریف کلی کلاسترینگانواع کلاسترینگکاربردهای کلاسترینگالزامات اصلی که یک الگوریتم کلاسترینگ بایستی برآورده کندمسائل و چالشها در کلاسترینگروش های کلاسترینگ
 

خرید و دانلود پاورپوینت بررسی الگوریتم کلاسترینگ فازی و درس منطق فازی


پروژه فازی: الگوریتم ژنتیک فازی genetic fuzzy k-Modes برای خوشه بندی داده های گروهی (56 صفحه فایل ورد - Word)

پروژه فازی: الگوریتم ژنتیک فازی  genetic fuzzy k-Modes برای خوشه بندی داده های گروهی (56 صفحه فایل ورد - Word)

 

 

 

 

 

 

 

 

 

فهرست مطالب:

چکیدهمقدمهمروری بر روش های قبلالگوریتمk-means Hardمثالی عددی از الگوریتم k-meansمقادیر مرکز های اولیهفاصله بین مراکز و داده هاخوشه بندی داده هاتعیین مراکزفاصله مراکز- داده هاخوشه بندی داده هاتعیین مراکزفاصله مراکز- داده هاخوشه بندی داده هاالگوریتم Clustering (FCM) Fuzzy c-MeansHard k-Modes الگوریتمالگوریتم Fuzzy k-ModesالگوریتمGenetic fuzzy k-Modesنمایش رشته ایفرآیند مقدار دهی اولیهالگوریتم مقداردهی اولیهفرایند انتخابالگوریتم تولید جمعیت جدیدفرایند ادغامالگوریتم ادغامفرایند جهشپروسه جهشمعیار توقفآزمایش هامعیار کیفیت خوشه بندیمجموعه دادهنتایجنتیجه گیریپیوست – کد برنامهمراجع

چکیده:

خوشه بندی روشی است که داده های یک مجموعه داده را به گروه یا خوشه تقسیم می کند . از مرسوم ترین روش های خوشه بندی،الگوریتم های خوشه بندی k-Means وfuzzy k-Means می باشند.این دو الگوریتم فقط روی داده های عددی عمل می کنند و به منظور رفع این محدودیت، الگوریتم های k-Modes و fuzzy k-Modes ارائه شدند که مجموعه داده های گروهی (دسته ای) را نیز خوشه بندی می کنند. . با این وجود، این الگوریتم ها ،شبیه همه روال های بهینه سازی دیگر که برای مینیمم عمومی یک تابع جستجو می کنند، احتمال گیر افتادن در یک مینیمم محلی وجود دارد. به منظوردستیابی به جوبب بهینه عمومی ، الگوریتم های تکاملی مانند ژنتیک و جدول جستجو با الگوریتم های مذکور ترکیب می شوند. در این پژوهش، الگوریتم ژنتیک ، GA، را با الگوریتم fuzzy k-Modes ترکیب شده ،بطوریکه عملگر ادغام به عنوان یک مرحله از الگوریتم fuzzy k-Modes تعریف می شود. آزمایش ها روی دو مجموعه داده واقعی انجام شده است تا همراه با مثال کارایی الگوریتم پیشنهادی را روشن نماید.

مقدمه:

به عنوان یک ابزار اولیه در داده کاوی ،تجزیه و تحلیل خوشه ، که تجزیه و تحلیل سگمنت نیز نامیده می شود،روشی است که داده ها را به گروه هایی همگن تحت عنوان خوشه تقسیم می کند.در چنین روشی داده های موجود در یک کلاستر یا خوشه خیلی شبیه به هم و داده ها ی کلاستر های مختلف خیلی متفاوت نسبت به هم هستند.اغلب، شباهت بر مبنای معیار فاصله می باشد.

آنالیز خوشه،خوشه بندی، تکنیک عمومی برای آنالیز داده های آماری می باشد که در بسیاری زمینه ها مانند یادگیری ماشین ، داده کاوی ، شناسایی الگو و آنالیز تصویر کاربرد دارد.در کنار اصطلاح خوشه بندی داده (یا فقط خوشه بندی)،بعضی اصطلاحات دیگرنیزهمانند کلاس بندی اتوماتیک ،طبقه بندی عددی، آنالیز نوع شناسی ، با معنای مشابه استفاده می شود[1].

به طور کلی ،یک الگوریتم خوشه بندی خوب معمولا برای طراحی شامل چهار فاز ذیل را شامل می شود:1- نمایش داده2- مدل کردن.3- بهینه سازی.4- اعتبار سنجی[2] ..

فاز نمایش داده، تعیین می کند که چه نوعی از ساختارهای خوشه می تواند داده ها را شناسایی کند.سپس فاز مدلینگ ضوابط و معیار ها را برروی ساختار تعریف می کند بطوریکه که ساختارها ی گروه های مطلوب را از موارد نامطلوب مجزا می کند.در فاز مدلینگ ، در طول جستجو برای ساختار های مخفی در داده ،یک معیار کیفیت مانند معیار بهینه سازی یا معیار تقریب تولید می شود. بعبارتی دیگرفاز بهینه سازش،ساختار های موثرتر و بهینه تر را انتخاب میکند. از آنجا که فرآیند خوشه بندی ،یک فرایند بدون سرپرستی است فاز اعتبار سنجی خیلی ضروری است تا نتایج تولید شده به وسیله الگوریتم خوشه بندی ارزیابی شوند.

به طور کلی ،الگوریتم های خوشه بندی به دو دسته تقسیم بندی می شوند[3,4] : الگوریتم های خوشه بندی سخت و الگوریتم های خوشه بندی فازی.

در چهارچوب خوشه بندی سخت ،هر شی ء به یک و فقط یک خوشه تعلق دارد و برعکس در چهار چوب خوشه بندی فازی به هر شی ء اجازه داده می شود که توابع تعلقی به همه خوشه ها داشته باشد.هر دو روش الگوریتم خوشه بندی سخت و فازی ،مرکز های خوشه (نمونه های اولیه) را تعیین می کنند و مجموع مربع فاصله بین این مرکز ها و خوشه ها را مینیمم می کنند.

بسیاری از الگوریتم ها به منظور دستیابی به خوشه بندی سخت در یک مجموعه داده پیشرفت داده شده اند.در بین آنها الگوریتم k-meansو روش های خوشه بندی IsoData به طور گسترده ای مورد استفاده گرفته اند.این دو الگوریتم بر پایه تکرار می باشند. کاربرد مجموعه های فازی در توابع کلاس بندی موجب می شود هر داده در یک زمان به چندین کلاس با درجه های متفاوت تعلق داشته باشد[3].

معروف ترین و پرکاربردترین الگوریتم خوشه بندی فازی ،الگوریتم fuzzy C-Means [7] است. الگوریتم fuzzy C-Means با یک مقدار اولیه از Wشروع می شود و مکررا بین تخمین مراکز خوشه Z داده شده درZ و تخمین ماتریس تعلق داده شده درW تکرار می شود تا هنگامیکه دو مقدار متوالی از Z یا W مساوی شوند.

از نظر ریاضی ،یک مسئله خوشه بندی فازی را می توان به صورت یک مسئله بهینه سازی به صورت ذیل نمایش داد.[5,6]

که n تعداد اشیاء در مجموعه داده مورد بررسی وk تعداد خوشه ها است .مجموعه از n شی ء است که هر یک با d ویژگی توصیف می شوند.   Z یک مجموعه با k مرکز کلاستر ، W یک ماتریس تعلق فازی و توان وزن و d معیار فاصله معین بین مرکز خوشه و شی ء می باشد.

از آنجا که الگوریتم fuzzy c-Means فقط روی داده های عددی کار می کند،یک الگوریتم fuzzy k-Modes  را به منظور خوشه بندی مجموعه داده های گروهی پیشنهاد می دهیم [6-9] . با این وجود،این الگوریتم ها ،شبیه همه روال های بهینه سازی دیگر که برای مینیمم عمومی یک تابع جستجو می کنند، احتمال گیر افتادن در یک مینیمم محلی وجود دارد.

برای مسئله بهینه سازی ،یک مسئله شناخته شده وابسته به هر دو الگوریتم fuzzy C-Means و fuzzy k-Modes این است که آنها ممکن است روی بهینه محلی متوقف شوند[5] .برای رفع این مشکل و رسیدن به یک راه حل عمومی،تکنیک های بر پایه الگوریتم های ژنتیک و تابو سرچ به کار برده شده اند. برای مثال ،الگوریتم genetic k-Means،الگوریتم genetic و الگوریتمk-Means  را ترکیب می کند بدین منظورکه راه حل عمومی و بهینه را پیدا کند[10].به منظور پیدا کردن راه حل بهینه عمومی برای الگوریتم fuzzy k-Modes،Ng و Wong تابو سرچ را بر پایه الگوریتم fuzzy k-Modes معرفی کردند[11].

هدف اصلی در این پروژه این است که الگوریتم genetic fuzzy k-Modes را بکار ببریم تا الگوریتم های fuzzy k-Modes و genetic را به منظور پیدا کردن راه حل بهینه در مسئله بهینه سازی ترکیب کند[5].

طرح کلی پروژه به صورت ذیل است که در قسمت 2، مروری برکارهای قبل و دیگر روش ها خواهیم داشت .بدین صورت که ابتدا الگوریتم های k-means, fuzzy C-means,k-modes,fuzzy k-modes با جزییات شرح می دهیم که مقدمه ای از روال کلی رسیدن به الگوریتم مورد بررسی در این مقاله هستند. سپس در قسمت 3 ،روش پیشنهادی مان،الگوریتم ترکیبی genetic fuzzy k-Modes را تشریح می کنیم. نتایج پیاده سازی الگوریتم برروی دو مجموعه داد ه واقعی از UCI را در قسمت 4 نشان می دهیم ودر نهایت در قسمت 5 بعضی نتایج را عنوان می کنیم.

2- مروری بر روش های قبل

 1.2- الگوریتمk-means Hard

الگوریتم k-means،الگوریتمی است که n نمونه داده را بر پایه ویژگی هایشان به c قسمت (c<n) خوشه بندی می کند. الگوریتم k-means روال هایی بر پایه نمونه اولیه هستند که فاصله بین نمونه های اولیه و دیگر داده ها را به وسیله ساختار یک تابع هدف مینیمم می کند[7].بعبارتی دیگر هدف الگوریتم این است که واریانس درون خوشه ای کل ،یا تابع مربع خطا را مینیمم سازد.این الگوریتم در سال 1956 معرفی شد.

روال کلی الگوریتم بدین صورت می باشد که :

تعداد خوشه ها را ، k در نظر بگیرید.به طور تصادفی k خوشه تولید کنید و مراکز خوشه ها را تعیین نمایید.یا به طور مستقیم، k نقطه رندم را به عنوان مراکز خوشه ها تولید کنید.در مجموعه داده،هر نمونه داده را به نزدیکترین مرکز کلاسترآن نسبت دهید.دوباره مراکز خوشه های جدید را بدست آورید.دو مرحله قبل را تا زمانیکه همگرایی مناسب حاصل شود(تفاوتی در دو خوشه بندی متوالی وجود نداشته باشد)،تکرار نمایید.

خرید و دانلود پروژه فازی: الگوریتم ژنتیک فازی  genetic fuzzy k-Modes برای خوشه بندی داده های گروهی (56 صفحه فایل ورد - Word)


اولویت بندی نگاشتهای مورد استفاده در تحلیل لرزه ای بر اساس تطبیق بیشینه با زلزله مبنا

اولویت بندی نگاشتهای مورد استفاده در تحلیل لرزه ای بر اساس تطبیق بیشینه با زلزله مبنا

مقاله با عنوان: اولویت بندی نگاشتهای مورد استفاده در تحلیل لرزه ای بر اساس تطبیق بیشینه با زلزله مبنا
نویسندگان: محسن شهروزی ، احسان اکبری
محل انتشار: هشتمین کنگره ملی مهندسی عمران – دانشگاه صنعتی نوشیروانی بابل - 17 و 18 اردیبهشت 93
فرمت فایل: PDF و شامل 8 صفحه می باشد.

چکیده:
برای کاربرد تحلیل‌های تاریخچه زمانی بویژه غیرخطی، انتخاب چند شتاب نگاشت زلزله موجود ضروری است. این زلزله ها باید بیشترین همبستگی با ویژگی‌های منطقه احداث را داشته باشند ولی معمولا تعداد کافی رکورد مه لرزه در یک محل موجود نیست. مقاله حاضر برای حصول به نتیجه منطقی با داشتن حتی یک زلزله مبنا در محل، روشی ارائه می نماید که بتوان سایر نگاشت های مورد نیاز را از لیست زلزله های مناطق مختلف جهان انتخاب نمود. در این شیوه ویژگی‌های مختلف زلزله ها از جمله محتوای فرکانسی، زمان دوام، انرژی رکورد، مقادیر اوج حرکت قوی زمین مد نظر قرار گرفته و طی الگوریتم اولویت بندی و خوشه بندی ارائه شده مجموعه زلزله های با تطبیق حداکثر نسبت به زلزله مبنا تعیین می شوند. سپس به تعداد مورد نیاز از بین این زلزله ها به ترتیب اولویت حاصل جهت استفاده در تحلیل‌های دقیق‌تر و کاربردهای مهندسی متناظر انتخاب می گردند.

** توجه: خواهشمندیم در صورت هرگونه مشکل در روند خرید و دریافت فایل از طریق بخش پشتیبانی در سایت مشکل خود را گزارش دهید. **


خرید و دانلود اولویت بندی نگاشتهای مورد استفاده در تحلیل لرزه ای بر اساس تطبیق بیشینه با زلزله مبنا


پـــایــان نــامه روش های خوشه بندی جریان داده

چکیده

 حجم بزرگ داده ها به تنهایی به مدیران سازمان ها در تصمیم سازی و تصمیم گیری هیچ کمکی نمی کند، بلکه باعث سردرگمی مدیران سازمان ها نیز می شود.بنابراین مدیریت داده های خام و تبدیل داده های خارجی و داخلی سازمان به اطلاعات و دانش با استفاده از تکنیک های گوناگون،نقش اساسی و محوری دارد.از تکنیک های معروف در این زمینه داده کاوی است،که می تواند بر روی بانک اطلاعاتی انجام شود و دانش مورد نیاز را بدست آورد.در فصل اول به بررسی این مفهوم پرداختیم. کاوش خوشه ها نیز یکی از تکنیک های حائز اهمیت در زمینه رو به رشد،معروف به داده کاوی اکتشافی می باشد که در رشته های گوناگون مهندسی و علمی از قبیل زیست شناسی،روان شناسی،پزشکی،بازاریابی،کامپیوتر و نقشه برداری ماهواره ای به کار گرفته شده است. این مفهوم در فصل های سوم و چهارم دنبال شده است.در فصل سوم به یکی از الگوریتم های خوشه بندی به نام CStree پرداخته شده و نقاط ضعف این الگوریتم نیز مطرح شده است .تحلیل خوشه ها،اطلاعات را بوسیله یک ساختار اساسی مختصر بدو شکل گروه بندی تنها یا گروه بندی سلسله مراتبی سازماندهی می نماید.خوشه بندی ،ابزاری برای اکتشاف ساختارهایی از درون داده هاست که نیاز به هیچ فرضی از آنها نیست.این روش در هوش مصنوعی و شناسایی الگو،یادگیری بدون ناظر نامیده می شود.الگوریتم های خوشه بندی گوناگونی برای استخراج دانش از درون مجموعه اطلاعات مختلف وجود دارد.اما عموما این الگوریتم ها حساس به داده های مورد آزمایش و برخی پارامترهای اولیه می باشند،لذا نتایج حاصل از آنها وابسته به ساختار داده ها می باشد.تاکنون الگوریتمی ارائه نشده است که بتواند هر گونه ساختار داده ای را استخراج نماید. یکی دیگر از پدیده های نوظهور در دنیای اطلاعات،داده های جریانی می باشند.این پدیده که در فصل چهارم مطرح شده است،اشاره به حجم وسیعی از اطلاعات انباشته شده دارد که محدودیت های فراوانی برای پردازش ایجاد کرده اند.اندازه این داده ها بیش از حافظه اصلی،یکی از این موانع می باشد.لذا می بایست الگوریتم های جدیدی برای برخورد با این گونه داده ها توسعه یابند.

کلمات کلیدی: داده کاوی، دسته بندی، خوشه بندی، جریان داده


فهرست مطالب

تقدیم به: 3

تقدیر و تشکر. 4

فصل اول مقدمه ای بر داده کاوی. 1

1-1 مقدمه 2

1-2عامل مسبب پیدایش داده کاوی. 2

1-3داده کاوی و مفهوم اکتشاف دانش (K.D.D) 3

1-3-1 تعریف داده کاوی. 5

2-3-1 فرایند داده‌کاوی. 6

1-3-3 قابلیتهای داده کاوی. 7

4-3-1 چه نوع داده‌هایی مورد کاوش قرار می گیرند؟ 8

4-1 وظایف داده کاوی. 9

1-4-1 کلاس بندی. 10

2-4-1 مراحل یک الگوریتم کلاس‌بندی. 11

3-4-1 انواع روش‌های کلاس‌بندی. 11

1-3-4-1 درخت تصمیم. 12

1-1-3-4-1 کشف تقسیمات.. 13

2-1-3-4-1 دسته بندی با درخت تصمیم. 15

3-1-3-4-1 انواع درخت‌های تصمیم. 17

4-1-3-4-1 نحوه‌ی هرس کردن درخت.. 17

2-3-4-1 بیزی. 18

1-2-3-4-1 تئوری بیز. 20

2-2-3-4-1 دسته بندی ساده بیزی. 22

4-4-1 ارزیابی روش‌های کلاس‌بندی. 28

4-1-6 انواع روش‌های پیش بینی. 29

1-4-6-1 رگرسیون. 29

1-4-6-1-1 رگرسیون خطی. 29

1-4-6-1-2 رگرسیون منطقی. 31

1-4-7 تخمین. 32

فصل دوم خوشه بندی. 34

2 1-تعریف فرایند خوشه‌بندی. 35

2-2 روش ها و الگوریتم‌های خوشه‌بندی. 36

2-3 روش و الگوریتم سلسله مراتبی. 37

2 3-1-روش های سلسله‌مراتبی. 37

2 3-2-الگوریتم های سلسله مراتبی. 38

2-3-3- الگوریتم خوشه بندی single-linkage. 39

2 3-4-الگوریتم‌های تفکیک... 45

3-5-2روش‌های متکی برچگالی. 46

3-7-2 روش‌‌های متکی بر مدل. 47

فصل سوم خوشه بندی CS tree. 48

3-1مقدمه 49

3-2 مروری بر روش های خوشه بندی جریان داده 50

3-3 خوشه بندی توری جریان داده 52

3-1-3 مروری بر روش خوشه بندی توری CS tree. 53

3-2- 3 بررسی نقاط ضعف الگوریتم CS tree. 56

3-4 الگوریتم پیشنهادی. 60

3-1-4 بازتعریف مفهوم همسایگی و رفع مشکل تقسیم بی معنی خوشه ها 63

3-5 اصلاح روند بروز رسانی خوشه ها 66

3-6 اصلاح ساختار نمایش خوشه ها 67

فصل چهارم جریان داده و مدل های ان. 69

4-1 مقدمه 70

4-2 کاربردهای داده های جریانی. 71

4-2-1 شبکه های حسگر. 71

4-2-2 تحلیل ترافیک شبکه 72

4-2-3 محرک های مالی. 73

4-2-4 تحلیل تراکنش ها 73

4-3 مدل داده های جریانی. 74

4-4 زیربنای نظری. 75

4-4-1 تکنیک های مبتنی بر داده 76

4-4-1-1 نمونه برداری. 76

4-4-1-2 پراکنده ساختن بار 77

4-4-1-3 طراحی اولیه 77

4-4-1-4 ساختمان داده خلاصه 78

4-4-1-5 انبوه سازی. 78

4-4-2 تکنیک های مبتنی بر وظیفه 78

4-4-2-1 الگوریتم های تخمین. 79

4-4-2-2 الگوریتم های مبتنی بر پنجره 79

4-4-2-3 الگوریتم های دانه دانه سازی نتایج. 80

4-5 خوشه بندی داده های جریانی. 80

4-5-1 بهبود روش های سنتی. 81

4-5-1-1 الگوریتم CLARANS. 82

4-5-1-2 الگوریتم BIRCH.. 84

4-5-2 ظهور تکنیک های جدید. 87

4-5-2-1 الگوریتم مبتنی بر چگالی DBSCAN.. 87

4-5-2-2 الگوریتم مبتنی بر گریدSTING.. 90

4-6 بحث در مورد الگوریتم ها 93

4-6-1 ایا توسعه روش های سنتی درست است؟ 93

4-6-2 روش های جدید چه پیشنهاداتی دارند؟ 94

منابع. 96

فهرست اشکال

شکل 1-1 فرآینده داده کاوی.. 7

شکل1-2 نمونه یک درخت تصمیم.. 13

شکل 1-3 یک تقسیم بندی خوب ، درجه خلوص را برای فرزندان افزایش می دهد. 15

شکل 3-1 تقسیم خوشه های با معنی به زیر خوشه های بی معنی.. 58

شکل3-2 خطاهای روش Cs tree در ترکیب خوشه های یک بعدی و ایجاد خوشه های چند بعدی- قسمت A خطا در تعداد خوشه ها ، قسمت B خطا در شکل خوشه ها، قسمت C خطا در مرز خوشه ها 59

شکل3 -3  روی هم افتادگی خوشه ها در بروز رسانی به روش Cs tree. 60

شکل 4-2  الگوریتم خوشه بندی CLARA.. 82

شکل 4-3  الگوریتم خوشه بندی CLARANS . 84

شکل 4-4  الگوریتم خوشه بندی BIRCH.. 86

شکل 4-6 الگوریتم خوشه بندی.STING.. 92

 


فصل اول مقدمه ای بر داده کاوی

1-1 مقدمه

 امروزه با گسترش سیستم های پایگاهی و حجم بالای داده های ذخیره شده در این سیستم ها ، نیاز به ابزاری است تا بتوان داده های ذخیره شده را پردازش کرد و اطلاعات حاصل از این پردازش را در اختیار کاربران قرار داد .با استفاده از ابزارهای گوناگون گزارش گیری معمولی ، می توان اطلاعاتی را در اختیار کاربران قرار داد تا بتوانند به نتیجه گیری در مورد داده ها و روابط منطقی میان انها بپردازند اما وقتی که حجم داده ها خیلی بالا باشد ، کاربران هر چند زبر دست و با تجربه باشند نمی توانند الگوهای مفید را در میان حجم انبوه داده ها تشخیص دهند و یا اگر قادر به این کار هم با شوند ، هزینه عملیات از نظر نیروی انسانی و مادی بسیار بالا است .از سوی دیگر کاربران معمولا فرضیه ای را مطرح می کنند و سپس بر اساس گزارشات مشاهده شده به اثبات یا رد فرضیه می پردازند ، در حالی که امروزه نیاز به روشهایی است که اصطلاحا به کشف دانش بپردازند یعنی با کمترین دخالت کاربر و به صورت خودکار الگوها و رابطه های منطقی را بیان نمایند .

داده کاوی یکی از مهمترین این روشها است که به وسیله ان الگوهای مفید در داده ها با حداقل دخالت کاربران شناخته می شوند و اطلاعاتی را در اختیار کاربران و تحلیل گران قرار می دهند تا براساس انها تصمیمات مهم و حیاتی در سازمانها اتخاذ شوند .


 

 

1-2عامل مسبب پیدایش داده کاوی

اصلی ترین دلیلی که باعث شده داده کاوی کانون توجهات در صنعت اطلاعات قرار بگیرد، مساله در دسترس بودن حجم وسیعی از داده ها و نیاز شدید به اینکه از این داده ها,اطلاعات و دانش سودمند استخراج کنیم. اطلاعات و دانش بدست امده در کاربردهای وسیعی مورد استفاده قرار می گیرد.

داده کاوی را می توان حاصل سیر تکاملی طبیعی تکنولوژی اطلاعات دانست، که این سیر تکاملی ناشی از یک سیر تکاملی در صنعت پایگاه داده می باشد، نظیر عملیات جمع اوری داده ها وایجاد پایگاه داده، مدیریت داده و تحلیل و فهم داده ها.

تکامل تکنولوژی پایگاه داده و استفاده فراوان ان در کاربردهای مختلف سبب جمع اوری حجم فراوانی داده شده است. این داده های فراوان باعث ایجاد نیاز برای ابزارهای قدرتمند برای تحلیل داده ها گشته، زیرا در حال حاضر به لحاظ داده ثروتمند هستیم ولی دچار کمبود اطلاعات می باشیم.

ابزارهای داده کاوی داده ها را انالیز می کنند و الگوهای داده ها را کشف می کنند که می توان از ان در کاربردهایی نظیر تعیین استراتژی برای کسب و کار، پایگاه دانش و تحقیقات علمی و پزشکی، استفاده کرد. شکاف موجود بین داده ها و اطلاعات سبب ایجاد نیاز برای ابزارهای داده کاوی شده است تا داده های بی ارزش را به دانشی ارزشمند تبدیل کنیم



خرید و دانلود پـــایــان نــامه روش های خوشه بندی جریان داده