احتمال
23 صفحه در قالب word
فهرست مطالب
تاریخچه............................................................... 1
احتمال.................................................................. 4
احتمال نظری................................................ 5احتمال تجربی............................................................... 5
احتمال ذهنی......................................................... 6
محاسبه احتمال.......................................................... 6
جمع حوادث سازگار....................................................... 7
ضرب حوادث مستقل...................................................... 7
ضرب حوادث وابسته....................................................... 8
اصول اساسی قانون ضرب................................................. 9
جایگشت (تبدیل).............................................................. 11
ترتیب............................................................................ 13
قاعده ترتیب........................................................................ 14
ترکیب.......................................................................... 15
ویژگیهای ترکیب...................................................... 18توصیف احتمال یک حادثه............................................ 18خلاصه 19
تاریخچه
هیچ کس نمی داند که اعتقاد به شانس برای نخستین بار در چه زمانی و مکانی مطرح شد. در هر حال این امر در دوران ماقبل تاریخ ریشه دارد. با این حال، اسناد کافی نشان می دهد که انسانهای اولیه برای توجیه حوادث تصادفی به وسایلی متوسط می شده اند. برای مثال در آسیای صغیر در آیین پیشگویی مرسوم بود که پنج قاپ را بیندازند. ترتیب ممکن از قاپها، نام خدایی را به همراه داشت (مارکس و لارسن، 1990). برای مثال چنانچه ترتیب (4، 4، 3، 1) به دست می آمد (قاپ شش وجه دارد و به هر وجه آن یک شماره اختصاص داده می شد). گفته می شد زئوس منجی آمده است و چنین ترتیبی پنشانی از قوت قلب تلقی می شد و تفسیر آن این بود که آنچه در سر داری، بی مهابا به انجام برسان. یا اگر ترتیب 4، 4، 4، 6، 6 ظاهر می شد معنای آن این بود که در خانه ات بمان و به هیچ کجا مرو.
به تدریج پس از گذشت هزاران سال، تاس جانشین قاپ شد. در مقبره های مصر که 2000 سال پیش از میلاد مسیح ساخته شده اند، تاسهای سفالی به دست آمده اند. متداول ترین تاس بازی آن زمان هازاد نام داشت. هازاد توسط سربازانی که از جنگهای صلیبی بازگشتند، به اروپا آورده شد. ورق برای نخستین بار در قرن چهاردهم رواج پیدا کرد.
مورخان در مورد این که اعتقاد به احتمال شروع نامشخصی دارد اتفاق نظر دارند. شاید دلیل این امر ناسازگاری آن با عامل بارز موثر در تحول فرهنگ غرب، یعنی فلسفه یونان و خداشناسی مسیحیان در صدر مسیحیت باشد. یونانیان به عقیده شانس اکتفا می کدرند در صورتی که مسیحیان چنین اعتقادی نداشتند. در قرن شانزده احتمال سر از خاک برداشت. سازماندهی و احیا آن توسط جرولامو کاردان انجام گرفت. علاقه کاردان که ظاهراً تحصیلاتی در رشته پزشکی داشت، به قوانین احتمال، ناشی از میل وافر او به قمار بود. او در صدد دستیابی به یک الگوی ریاضی بود تا با کک آن بتواند حوادث اتفاقی را تشریح کند. آنچه که او سرانجام تدوین کرد تعریف کلاسیک احتمال است. به این صورت که در صورتی که تعداد نتایج ممکن حادثه ای که همه دارای احتمال یکسان هستند را با n نشان دهیم و چنانچه m نتیجه از n نتیجه ممکن اتفاق بیفتد، احتمال آن حادثه مساوی است. برای مثال در صورتی که تاسی بدون اریبی باشد، 6 ممکن (6= n) خواهد شد (نتایج 5 و 6) و احتمال 5 یا بزرگتر از آن مساوی یا خواهد بود.
کاردان ابتدایی ترین اصول احتمال را مطرح کرده بود. الگویی که او کشف کرده بود ممکن است پیش پا افتاده به نظر برسد اما حاکی از گامی عظیم بود. بسیاری از مورخان نقطه آغاز علم احتمال را سال 1654 می دانند. در پاریس قمار باز ثروتمندی به نام شوالیه دمور از چند ریاضی دان برجسته از قبیل بلز پاسکال سوالهایی پرسید که معروفترین آنها درباره نقاط بود.
دو نفر، الف و ب، موافقت می کنند که بدون تقلب مجموعه ای بازی را تا زمانی که یک نفر از آنها شش دست برنده شود، ادامه دهند. هر کدام از این دو نفر بر سر مبلغ یکسانی شرط بندی می کنند با این قصد که برنده کل، تمام مبلغ شرط بندی (بانک) را برنده شود. حال فرض کنید به هر دلیلی این بازیها قبل از موقع پایان پذیرد، مثلا در نقطه یا مرحله ای که فرد الف 5 دست و فرد ب 3 دست برنده شده باشد. در این مرحله یا نقطه از بازی، پول شرط بندی شده چطور باید تقسیم شود؟ پاسخ صحیح این است که فرد الف باید کل مبلغ شرط بندی شده را دریافت کند. چرا مبلغ شرط بندی شده باید به این ترتیب تقسیم شود؟
با طرح سوالهای دمور، حس کنجکاوی پاسکال برانگیخته شد و نظر خود را با پیر فرما، کارمند دولت و احتمالاً برجسته ترین ریاضی دان اروپا، در میان گذاشت. فرما با روی گشاده از نظر پاسکال استقبال کرد و از همان موقع بود که نظریه معروف تناظر پاسکال- فرما نه تنها برای حل مسائل نقاط مطرح شد بلکه شالوده ای برای کارهای اساسی تر گردید.خبر آنچه که فرما و پاسکال یافته بود انتشار یافت و دیگران هم به مطالعه این مساله پرداختند. معروفترین آنها دانشمند و ریاضی دان هلندی کریستیان های جنز است که نام او بیشتر به خاطر کارهایش در نورشناسی و نجوم در خاطرها مانده است. توجه های جنز در همان اوایل کارش به مسائل نقاط جلب شد. وی در سال 1657 کتاب محاسبات در بازیهای احتمالی را منتشر ساخت که قریب 50 سال به عنوان کتاب درسی درباره نظریه احتمال تدریس می شد (لارسن و مارکس، 1990). طرفداران های جنز او را بنیانگذار احتمالات می دانند.
احتمال
مفهوم احتمال به صورتهای مختلف در زندگی به کار برده می شود، احتمال به صورت کلی به درست نمایی اتفاق افتادن حادثه تعریف شده است. این درست نمایی غالباً با P نشان داده میشود و عبارت از نسبت اتفاق افتادن حادثه ای که انتظار وقوع آن می رود. ارزش مقداری احتمال بین صفر تا 1 قرار دارد. ارزش 1 برای پیشامد حتمی و ارزش صفر برای نشان دادن اینکه شانس یا احتمال وقوع حادثه معینی وجود ندارد، به کار برده می شود. در زندگی حوادث نادری وجود دارند که احتمال وقوع آنها به صورت مطلق حتمی است. به طور کلی، هرگاه تمام حوادث مورد سوال به صورت دقیق و روشن تعریف شوند، احتمال وقوع یک حادثه معین، P ، مساوی است با تعداد شیوه هایی که آن حادثه اتفاق می افتد تقسیم بر تعداد کل حالتها. به عبارت دیگر، P مساوی است با تعداد حالتهای مساعد تقسیم بر مجموع کل حالتها. برای مثال، در صورتی که تاس بدون اریبی را رها کنیم احتمال این که هر یک از شش وجه آن به زمین بنشیند مساوی است و احتمال این که هر یک از شماره های 2، 4 یا 6 به زمین بنشیند مساوی یا 5/0 است.
همان طور که گفته شد احتمال وقوع حادثه معینی را با P نشان می دهند. احتمال عدم وقوع همان حادثه را با q نشان می دهند. مجموع P و q همیشه مساوی یک است (p+q=1). برای مثال، در صورتی که سکه بدون اریبی را پرتاب کنیم، اگر احتمال آمدن طرف اول آن یا 5/0 است و جمع این دو احتمال مساوی 1 است (p+q=1). در صورتی که وقوع یک حادثه در احتمال وقوع حادثه دیگر تاثیری نداشته باشد، آنها را مستقل گویند. حوادث مرکب به حوادثی گفته می شوند که از دو یا چند حادثه ساده تشکیل شده باشند، مانند امکان آمدن دو تا 4 در دو مرتبه انداختن تاس.
احتمال نظری
فرض کنید تاسی را رها کردهاید چون این تاس دارای 6 وجه است و احتمال آمده هر کدام از وجوه آن نیز مساوی است بنابراین احتمال آمده هر یک از وجوه این تاس مساوی است. این احتمال را نظری مینامند زیرا بر اساس مفروضههای نظری محاسبه میشود. برای مثال در صورتی که در یک مسابقه ورزشی برای پیروزی تیمی 4000 ریال به 1000 ریال شرط بندی کنیم، در این شرط بندی نظر ما این است که 4 به یک به نفع ما خواهد بود، یعنی در نظر ما، تیمی که طرفدار آن هستیم از پنج بازی، امکان چهار موفقیت دارد. بنابراین احتمال اینکه تیم مزبور برنده شود، یا 8/0 است. این امکان بیشتر جنبه نظری دارد.
احتمال تجربی احتمال تجربی بر پایه مفروضههای نظری قرار ندارد، بلکه اساس آن تجربه است. متوسط تعداد دفعات برنده شدن تیم فوتبال را میتوان برحسب احتمال تجربی تفسیر کرد، در صورتی که احتمال برنده شدن در مسابقهای را میتوان با اساس فراوانی نسبی برد در مسابقههای گذشته به وسیله عددی بیان کرد. بنابراین اگر تیم خاصی از n بازی، r مرتبه برنده شود احتمال را فراوانی نسبی بازیهای برده شده مینامند. در صورتی که مسابقههای زیادتری با همین شرط انجام شود احتمال به دست آمده را تجربی گویند.
ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است
متن کامل را می توانید در ادامه دانلود نمائید
چون فقط تکه هایی از متن برای نمونه در این صفحه درج شده است ولی در فایل دانلودی متن کامل همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند موجود است