عنوان و چکیده مقاله
Classification by Cluster Analysis: A New Meta
Learning Based Approach
Anna Jurek, Yaxin Bi, Shengli Wu, Chris Nugent
School of Computing and Mathematics University of Ulster,
Jordanstown, Shore Road, Newtownabbey, Co. Antrim, UK, BT37 0QB
jurek-a@email.ulster.ac.uk, {y.bi, s.wu1, cd.nugent}@ulster.ac.uk
Abstract. Combination of multiple classifiers, commonly referred to as an
classifier ensemble, has previously demonstrated the ability to improve
classification accuracy in many application domains. One popular approach to
building such a combination of classifiers is known as stacking and is based on
a meta-learning approach. In this work we investigate a modified version of
stacking based on cluster analysis. Instances from a validation set are firstly
classified by all base classifiers. The classified results are then grouped into a
number of clusters. Two instances are considered as being similar if they are
correctly/incorrectly classified to the same class by the same group of
classifiers. When classifying a new instance, the approach attempts to find the
cluster to which it is closest. The method outperformed individual classifiers,
classification by a clustering method and the majority voting method.
Keywords: Combining Classifiers, Stacking, Ensembles, Clustering, Meta-
Learning.
دسته بندی بر اساس تجزیه و تحلیل خوشه ای: یک روش فراآموزشی جدید
چکیده:
ترکیبی از طبقه بندهای مختلف معمولاً به عنوان یک گروه طبقه بندی شده مورد اشاره قرار می گیرد که پیش از این قابلیت آن برای بهبود دقت طبقه بندی در بسیاری از حوزه های نرم افزاری ذکر شده است. یک روش محبوب برای ساخت چنین ترکیبی از طبقه بندها به نام پشته سازی سازی(پشته کردن) شناخته شده است که مبتنی بر یک روش فرا یادگیری است. در این بخش ما یدر ک نسخه ی اصلاح شده از روش پشته سازی سازی را بررسی می کنیم که مبتنی بر تجزیه و تحلیل خوشه ای است. نمونه های مجموعه های امکان سنجی ابتدا از طریق طبقات پایه ی خود تقسیم بندی می شوند. نتایج طبقه بندی شده سپس به تعدادی خوشه ها گروهبندی می شوند. دو نمونه مشابه نظر گرفته می شود اگر آنها درست/نادرست در یک کلاس با یک گروه طبقه بندی قرار گرفته باشند. در زمان طبقه بندی نمونه ی جدید، این روش در تلاش است که خوشه ای که نزدیکترین است را بیابد. این روش نسبت به طبقه بندی تکی، طبقه بندی با یک روش خوشه بندی و روش رای اکثریت، عملکرد و کارایی بهتری دارد.
کلمات کلیدی: طبقه بندهای ترکیب کننده، پشته سازی سازی(پشته کردن)، مونتاژ کردن، خوشه بندی، فراآموزشی (Meta Learning).
تعداد صفحات انگلیسی=10
تعداد صفحات فارسی=15
فایل ترجمه شده دارای کیفیت عالی و در فرمت وورد می باشد