پایان نامه آماده داده کاوی، مفاهیم و کاربرد با فرمت ورد(word)

امروزه با گسترش سیستم های پایگاهی و حجم بالای داده ها ی ذخیره شده در این سیستم ها ، نیاز به ابزاری است تا بتوان داده های ذخیره شده را پردازش کردواطلاعات حاصل از این پردازش را در اختیار کاربران قرار داد . با استفاده از پرسش های ساده در SQL و ابزارهای گوناگون گزارش گیری معمولی ، می توان اطلاعاتی را در اختیار کاربران قرار داد تا بتوانند به نتیجه گیری در مورد داده ها و روابط منطقی میان آنها بپردازند اما وقتی که حجم داده ها بالا باشد ،

فهرست :

چکیده

مقدمه

فصل اول – مفاهیم داده کاوی

مدیریت ذخیره سازی و دستیابی اطلاعات

ساختار بانک اطلاعاتی سازمان

داده کاوی (Data Mining)

مفاهیم پایه در داده کاوی

تعریف داده کاوی

مراحل فرایند کشف دانش از پایگاه داده ها

الگوریتم های داده کاوی

آماده سازی داده برای مدل سازی

درک قلمرو

ابزارهای تجاری داده کاوی Tools DM Commercial

منابع اطلاعاتی مورد استفاده

محدودیت های داده کاوی

حفاظت از حریم شخصی در سیستم‌های داده‌کاوی

فصل دوم : کاربردهای داده کاوی

کاربرد داده کاوی در کسب و کار هوشمند بانک

داده کاوی در مدیریت ارتباط با مشتری

کاربردهای داده کاوی در کتابخانه ها و محیط های دانشگاهی

داده کاوی و مدیریت موسسات دانشگاهی

داده کاوی و مدیریت بهینه وب سایت ها

داده‌کاوی و مدیریت دانش

کاربرد داده‌کاوی در آموزش عالی

فصل سوم – بررسی موردی۱: وب کاوی

معماری وب کاوی

مشکلات و محدودیت های وب کاوی در سایت های فارسی زبان

محتوا کاوی وب

فصل چهارم – بررسی موردی

داده کاوی در شهر الکترونیک

زمینه دادهکاوی در شهر الکترونیک

کاربردهای داده کاوی در شهر الکترونیک

چالشهای داده کاوی در شهر الکترونیک

مراجع و ماخذ



خرید و دانلود پایان نامه آماده داده کاوی، مفاهیم و کاربرد با فرمت ورد(word)


پایان نامه با موضوع داده کاوی، مفاهیم و کاربرد‎(فرمت word) و 100صفحه

پایان نامه با موضوع داده کاوی، مفاهیم و کاربرد‎(فرمت word) و 100صفحه

پایان نامه با موضوع داده کاوی، مفاهیم و کاربرد‎(فرمت word)

امروزه با گسترش سیستم های پایگاهی و حجم بالای داده ها ی ذخیره شده در این سیستم ها ، نیاز به ابزاری است تا بتوان داده های ذخیره شده را پردازش کردواطلاعات حاصل از این پردازش را در اختیار کاربران قرار داد . با استفاده از پرسش های ساده در SQL و ابزارهای گوناگون گزارش گیری معمولی ، می توان اطلاعاتی را در اختیار کاربران قرار داد تا بتوانند به نتیجه گیری در مورد داده ها و روابط منطقی میان آنها بپردازند اما وقتی که حجم داده ها بالا باشد ، کاربران هر چند زبر دست و با تجربه باشند نمی توانند الگوهای مفید را در میان حجم انبوه داده ها تشخیص دهند و یا اگر قادر به این کار هم با شند ، هزینه عملیات از نظر نیروی انسانی و مادی بسیار بالا است . از سوی دیگر کاربران معمولا فرضیه ای را مطرح می کنند و سپس بر اساس گزارشات مشاهده شده به اثبات یا رد فرضیه می پردازند ، در حالی که امروزه نیاز به روشهایی است که اصطلاحا به کشف دانش بپردازند یعنی با کمترین دخالت کاربر و به صورت خودکار الگوها و رابطه های منطقی را بیان نمایند . داده کاوی یکی از مهمترین این روشها است که به وسیله آن الگوهای مفید در داده ها با حداقل دخالت کاربران شناخته می شوند و اطلاعاتی را در اختیار کاربران و تحلیل گران قرار می دهند تا براساس آنها تصمیمات مهم و حیاتی در سازمانها اتخاذ شوند . در داده کاوی از بخشی از علم آمار به نام تحلیل اکتشافی داده ها استفاده می شود که در آن بر کشف اطلاعات نهفته و ناشناخته از درون حجم انبوه داده ها تاکید می شود . علاوه بر این داده کاوی با هوش مصنوعی و یادگیری ماشین نیز ارتباط تنگاتنگی دارد ، بنابراین می توان گفت در داده کاوی تئوریهای پایگاه داده ها ، هوش مصنوعی ، یادگیری ماشین و علم آمار را در هم می آمیزند تا زمینه کاربردی فراهم شود . باید توجه داشت که اصطلاح داده کاوی زمانی به کار برده می شود که با حجم بزرگی از داده ها ، در حد مگا یا ترابایت ، مواجه باشیم . در تمامی منابع داده کاوی بر این مطلب تاکید شده است . هر چه حجم داده ها بیشتر و روابط میان آنها پیچیده تر باشد دسترسی به اطلاعات نهفته در میان داده ها مشکلتر می شود و نقش داده کاوی به عنوان یکی از روشهای کشف دانش ، روشن تر می گردد .

فهرست :

چکیده

مقدمه

فصل اول – مفاهیم داده کاوی

مدیریت ذخیره سازی و دستیابی اطلاعات

ساختار بانک اطلاعاتی سازمان

داده کاوی (Data Mining)

مفاهیم پایه در داده کاوی

تعریف داده کاوی

مراحل فرایند کشف دانش از پایگاه داده ها

الگوریتم های داده کاوی

آماده سازی داده برای مدل سازی

درک قلمرو

ابزارهای تجاری داده کاوی Tools DM Commercial

منابع اطلاعاتی مورد استفاده

محدودیت های داده کاوی

حفاظت از حریم شخصی در سیستم‌های داده‌کاوی

فصل دوم : کاربردهای داده کاوی

کاربرد داده کاوی در کسب و کار هوشمند بانک

داده کاوی در مدیریت ارتباط با مشتری

کاربردهای داده کاوی در کتابخانه ها و محیط های دانشگاهی

داده کاوی و مدیریت موسسات دانشگاهی

داده کاوی و مدیریت بهینه وب سایت ها

داده‌کاوی و مدیریت دانش

کاربرد داده‌کاوی در آموزش عالی

فصل سوم – بررسی موردی۱: وب کاوی

معماری وب کاوی

مشکلات و محدودیت های وب کاوی در سایت های فارسی زبان

محتوا کاوی وب

فصل چهارم – بررسی موردی

داده کاوی در شهر الکترونیک

زمینه دادهکاوی در شهر الکترونیک

کاربردهای داده کاوی در شهر الکترونیک

چالشهای داده کاوی در شهر الکترونیک

مراجع و ماخذ



خرید و دانلود پایان نامه با موضوع داده کاوی، مفاهیم و کاربرد‎(فرمت word) و 100صفحه


پایان نامه با موضوع داده کاوی، مفاهیم و کاربرد‎(فرمت word) و 100صفحه

پایان نامه با موضوع داده کاوی، مفاهیم و کاربرد‎(فرمت word) و 100صفحه

پایان نامه با موضوع داده کاوی، مفاهیم و کاربرد‎(فرمت word)

امروزه با گسترش سیستم های پایگاهی و حجم بالای داده ها ی ذخیره شده در این سیستم ها ، نیاز به ابزاری است تا بتوان داده های ذخیره شده را پردازش کردواطلاعات حاصل از این پردازش را در اختیار کاربران قرار داد . با استفاده از پرسش های ساده در SQL و ابزارهای گوناگون گزارش گیری معمولی ، می توان اطلاعاتی را در اختیار کاربران قرار داد تا بتوانند به نتیجه گیری در مورد داده ها و روابط منطقی میان آنها بپردازند اما وقتی که حجم داده ها بالا باشد ، کاربران هر چند زبر دست و با تجربه باشند نمی توانند الگوهای مفید را در میان حجم انبوه داده ها تشخیص دهند و یا اگر قادر به این کار هم با شند ، هزینه عملیات از نظر نیروی انسانی و مادی بسیار بالا است . از سوی دیگر کاربران معمولا فرضیه ای را مطرح می کنند و سپس بر اساس گزارشات مشاهده شده به اثبات یا رد فرضیه می پردازند ، در حالی که امروزه نیاز به روشهایی است که اصطلاحا به کشف دانش بپردازند یعنی با کمترین دخالت کاربر و به صورت خودکار الگوها و رابطه های منطقی را بیان نمایند . داده کاوی یکی از مهمترین این روشها است که به وسیله آن الگوهای مفید در داده ها با حداقل دخالت کاربران شناخته می شوند و اطلاعاتی را در اختیار کاربران و تحلیل گران قرار می دهند تا براساس آنها تصمیمات مهم و حیاتی در سازمانها اتخاذ شوند . در داده کاوی از بخشی از علم آمار به نام تحلیل اکتشافی داده ها استفاده می شود که در آن بر کشف اطلاعات نهفته و ناشناخته از درون حجم انبوه داده ها تاکید می شود . علاوه بر این داده کاوی با هوش مصنوعی و یادگیری ماشین نیز ارتباط تنگاتنگی دارد ، بنابراین می توان گفت در داده کاوی تئوریهای پایگاه داده ها ، هوش مصنوعی ، یادگیری ماشین و علم آمار را در هم می آمیزند تا زمینه کاربردی فراهم شود . باید توجه داشت که اصطلاح داده کاوی زمانی به کار برده می شود که با حجم بزرگی از داده ها ، در حد مگا یا ترابایت ، مواجه باشیم . در تمامی منابع داده کاوی بر این مطلب تاکید شده است . هر چه حجم داده ها بیشتر و روابط میان آنها پیچیده تر باشد دسترسی به اطلاعات نهفته در میان داده ها مشکلتر می شود و نقش داده کاوی به عنوان یکی از روشهای کشف دانش ، روشن تر می گردد .

فهرست :

چکیده

مقدمه

فصل اول – مفاهیم داده کاوی

مدیریت ذخیره سازی و دستیابی اطلاعات

ساختار بانک اطلاعاتی سازمان

داده کاوی (Data Mining)

مفاهیم پایه در داده کاوی

تعریف داده کاوی

مراحل فرایند کشف دانش از پایگاه داده ها

الگوریتم های داده کاوی

آماده سازی داده برای مدل سازی

درک قلمرو

ابزارهای تجاری داده کاوی Tools DM Commercial

منابع اطلاعاتی مورد استفاده

محدودیت های داده کاوی

حفاظت از حریم شخصی در سیستم‌های داده‌کاوی

فصل دوم : کاربردهای داده کاوی

کاربرد داده کاوی در کسب و کار هوشمند بانک

داده کاوی در مدیریت ارتباط با مشتری

کاربردهای داده کاوی در کتابخانه ها و محیط های دانشگاهی

داده کاوی و مدیریت موسسات دانشگاهی

داده کاوی و مدیریت بهینه وب سایت ها

داده‌کاوی و مدیریت دانش

کاربرد داده‌کاوی در آموزش عالی

فصل سوم – بررسی موردی۱: وب کاوی

معماری وب کاوی

مشکلات و محدودیت های وب کاوی در سایت های فارسی زبان

محتوا کاوی وب

فصل چهارم – بررسی موردی

داده کاوی در شهر الکترونیک

زمینه دادهکاوی در شهر الکترونیک

کاربردهای داده کاوی در شهر الکترونیک

چالشهای داده کاوی در شهر الکترونیک

مراجع و ماخذ



خرید و دانلود پایان نامه با موضوع داده کاوی، مفاهیم و کاربرد‎(فرمت word) و 100صفحه


پروژه Data Mining

پروژه Data Mining

پروژه Data Mining
چکیده:
در دو دهه قبل توانایی¬های فنی بشر برای تولید و جمع¬آوری داده‌ها به سرعت افزایش یافته است. عواملی نظیر استفاده گسترده از بارکد برای تولیدات تجاری، به خدمت گرفتن کامپیوتر در کسب¬و¬کار، علوم، خدمات¬ دولتی و پیشرفت در وسائل جمع¬آوری داده، از اسکن کردن متون و تصاویر تا سیستمهای سنجش از دور ماهواره¬ای، در این تغییرات نقش مهمی دارند.
    بطور کلی استفاده همگانی از وب و اینترنت به عنوان یک سیستم اطلاع رسانی جهانی ما را مواجه با حجم زیادی از داده و اطلاعات می‌کند. این رشد انفجاری در داده‌های ذخیره شده، نیاز مبرم وجود تکنولوژی¬های جدید و ابزارهای خودکاری را ایجاد کرده که به صورت هوشمند به انسان یاری رسانند تا این حجم زیاد داده را به اطلاعات و دانش تبدیل کند. داده¬کاوی به عنوان یک راه حل برای این مسائل مطرح می باشد. در یک تعریف غیر رسمی داده¬کاوی فرآیندی است، خودکار برای استخراج الگوهایی که دانش را بازنمایی می¬کنند، که این دانش به صورت ضمنی در پایگاه داده¬های عظیم، انباره¬داده  و دیگر مخازن بزرگ اطلاعات، ذخیره شده است.
        به لحاظ اینکه در چند سال اخیر مبحث داده¬کاوی و اکتشاف دانش موضوع بسیاری از مقالات و کنفرانسها قرار گرفته و نرم¬افزار¬های آن در بازار به شدت مورد توجه قرار گرفته، از اینرو در مقاله سعی بر آن شده تا گذری بر آن داشته باشیم.
و....

فهرست مطالب:

فصل1: مقدمه¬ای بر داده¬کاوی
1-1 تعریف داده¬کاوی
2-1 تاریخچه داده¬کاوی
3-1 چه چیزی سبب پیدایش داده¬کاوی شده است؟
4-1 اجزای سیستم داده کاوی
5-1 جایگاه داده¬کاوی در میان علوم مختلف
6-1 قابلیتهای داده¬کاوی
7-1 چرا به داده¬کاوی نیاز داریم؟
8-1 داده¬کاوی چه کارهایی نمی¬تواند انجام دهد؟
9-1 کاربردهای داده¬کاوی
1-9-1 کاربردهای پیش¬بینی¬کننده
2-9-1 کاربردهای توصیف¬کننده
10-1 ابزارهای تجاری داده¬کاوی
11-1 داده¬کاوی و انبار¬داده¬ها
1-11-1 تعاریف انبار¬داده
2-11-1 چهار خصوصیت اصلی انبار¬داده
3-11-1 موارد تفاوت انبار¬داده و پایگاه¬ داده
12-1 داده¬کاوی و OLAP
1-12-1 OLAP
2-12-1 انواع OLAP
13-1 مراحل فرایند کشف دانش از پایگاه داده¬ها
1-13-1 انبارش داده¬ها
2-13-1 انتخاب داده¬ها
3-13-1 پاکسازی- پیش¬پردازش- آماده¬سازی
4-13-1 تبدیل داده¬ها
5-13-1 کاوش در داده¬ها (Data Mining)
6-13-1 تفسیر نتیجه
فصل 2: قوانین ارتباطی
1-2 قوانین ارتباطی
2-2 اصول پایه
1-2-2 شرح مشکل جدی
2-2-2 پیمایش فضای جستجو
3-2-2 مشخص کردن درجه حمایت مجموعه
3-2 الگوریتمهای عمومی
1-3-2 دسته¬بندی
2-3-2 BFS و شمارش رویداد¬ها
3-3-2 BFS و دونیم¬سازی TID-list
4-3-2 DFS و شمارش رویداد
5-3-2 DFS و دو نیم¬سازی TID-list
4-2 الگوریتم Apriori
1-4-2 مفاهیم کلیدی
2-4-2 پیاده¬سازی الگوریتم Apriori
3-4-2 معایب Apriori و رفع آنها
5-2 الگوریتم رشد الگوی تکرارشونده
1-5-2 چرا رشد الگوی تکرار سریع است؟
6-2 مقایسه دو الگوریتم Apriori و FP-growth
7-2 تحلیلارتباطات
فصل 3: وب¬کاوی و متن¬کاوی
1-3 وبکاوی
1-1-3 الگوریتمهای هیتس و لاگسام
2-1-3 کاوش الگوهای پیمایش مسیر
2-3 متنکاوی
1-2-3 کاربردهای متن¬کاوی
1-1-2-3 جستجو و بازیابی
2-1-2-3 گروه¬بندی و طبقه¬بندی
3-1-2-3 خلاصه¬سازی
4-1-2-3 روابط میان مفاهیم
5-1-2-3 یافتن و تحلیل گرایشات
6-1-2-3 برچسب زدن نحوی (pos)
7-1-2-3 ایجاد Thesaurus و آنتولوژی به صورت اتوماتیک
2-2-3 فرایند متن¬کاوی
3-2-3 روشهای متن¬کاوی
مراجع:

..........................
ادامه مطلب در دانلود فایل قابل مشاهده است
...............................
نوع فایل: ((پی دی اف-pdf))

تعداد صفحات: 92 صفحه

حجم فایل: 2 مگابایت

قیمت: 3000 تومان
..............................
دانلود فایل ((ورد-word-doc-dox)) این پروژه
..............................



خرید و دانلود پروژه Data Mining