لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه:11
فهرست:
انتگرال
در حساب دیفرانسیل و انتگرال ، از انتگرال یک تابع برای عمومیت دادن به محاسبه مساحت ، حجم ، جرم یک تابع استفاده می شود. فرایند پیدا کردن جواب انتگرال را انتگرال گیری گویند.البته تعاریف متعددی برای انتگرال گیری وجود دارد ولی در هر حال جواب مشابه ای از این تعاریف بدست می آید. انتگرال یک تابع مثبت پیوسته در بازه (a,b) در واقع پیدا کردن مساحت بین خطوط x=0 , x=10 و خم منفی F است . پس انتگرال F بین a و b در واقع مساحت زیر نمودار است. اولین بار لایب نیتس نماد استانداری برای انتگرال معرفی کرد و به عنوان مثال انتگرال f بین a و b رابه صورت نشان می دهند علامت ،انتگرال گیری از تابع f را نشان می دهند ،aو b نقاط ابتدا و انتهای بازه هستند و f تابعی انتگرال پذیر است و dx نمادی برای متغیر انتگرال گیری است.
لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه111
فهرست مطالب
محاسبه انتگرال
تعریف های انتگرال
انتگرال ریمان مجموع ریمان:
نقاط شروع و پایان بازه:
تعداد مستطیل ها (یا تعداد بازه ها)
انتگرال :
در حساب دیفرانسیل و انتگرال ، از انتگرال یک تابع برای عمومیت دادن به محاسبه مساحت ، حجم ، جرم یک تابع استفاده می شود. فرایند پیدا کردن جواب انتگرال را انتگرال گیری گویند.البته تعاریف متعددی برای انتگرال گیری وجود دارد ولی در هر حال جواب مشابه ای از این تعاریف بدست می آید. انتگرال یک تابع مثبت پیوسته در بازه (a,b) در واقع پیدا کردن مساحت بین خطوط x=0 , x=10 و خم منفی F است . پس انتگرال F بین a و b در واقع مساحت زیر نمودار است. اولین بار لایب نیتس نماد استانداری برای انتگرال معرفی کرد و به عنوان مثال انتگرال f بین a و b رابه صورت نشان می دهند علامت ،انتگرال گیری از تابع f را نشان می دهند ،aو b نقاط ابتدا و انتهای بازه هستند و f تابعی انتگرال پذیر است و dx نمادی برای متغیر انتگرال گیری است.
انتگرال یک تابع مساحت زیر نمودار آن تابع است.
از لحاظ تاریخی dx یک کمیت بی نهایت کوچک را نشان می دهد. هر چند در تئوریهای جدید، انتگرال گیری بر پایه متفاوتی
پایه گذاری شده است به عنوان مثال تابع f را بین x=0 تا x
این مجموعه شامل 36 صفحه است و انتگرال گیری از توابع مختلط را به شکلی پایه ای و مفهومی بیان می کند .
متن این رساله بسیار روان است به گونه ای که با خواندن آن بر موضوع انتگرال توابع مختلط تسلط کافی پیدا می کنید .
این مجموعه هم شامل درس نامه و هم شامل مثال های حل شده ی بسیاری می باشد .
فرمت فایل : word (قابل ویرایش) تعداد صفحات : 66 صفحه
سری فوریه
14-1- خواص کلی
تمرینات
14-1-1 می خواهیم تابع (به صورت عبارت درجه دوم انتگرال پذیر) را به کمک یک سری فوریه متناهی نمایش دهیم. معیار مناسبی برای دقت سری به کمک انتگرال مربع انحراف برقرار زیر به دست می آید.
نشان دهید که شرط کیمنه شدن یعنی:
به ازای همه مقادیرn، به انتخاب an و bn به صورتی که در معادله های (14-11) و (14/12) داده شده است، می انجامد.
پاسخ
به همین ترتیب خواهیم داشت:
که برای رسیدن به روابط فوق از روابط تعامد (14-7) و (14-8) و (14-9) استفاده کرده ایم.
14-1-2 در بررسی یک شکل موج پیچیده (کشنده های اقیانوسی، زمین لرزه ها، نوارهای موسیقی و مانند آنها) بهتر است. از سری فوریه ای به صورت زیر بهره گیریم.
نشان دهید که این معادله با معادله (14-1) هم ارز است و در آن
پاسخ: قبلاً سری فوریه را به صورت زیر تعریف کرده بودیم.
سری فوریه جدیدی که در نظر گرفته بودیم به صورت زیر قابل بسط دادن است.
در صورتی که داشته باشیم:
روابط I و I I هم ارز هستند.
ادامه...