دانلود پاور پوینت درس ریاضی فیزیک 3 با فرمت PPT و قابل ویرایش تعداد اسلاید 243
دانلود پاور پوینت آماده
اهداف درس - منابع
آشنایی با برخی روشهای ریاضی و کاربرد آنها در فیزیک
منبع درس: روشهای ریاضی در فیزیک نوشته جورج آرفکن (ترجمه فارسی آن توسط مرکز نشر دانشگاهی منتشر شده است.)
سر فصل درس
تابع گاما
توابع بسل
توابع لژاندر
توابح خاص فیزیک ریاضی
(شامل هرمیت-لاگر-چبیشف-فوق هندسی)
تبدیلهای انتگرالی
لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه:9
فهرست و توضیحات:
مقدمه
درآمد
طبیعت و عدم قطعیت
پیامدهای فیزیک کوانتومی
عدم حتمیّت در نظریة کوانتوم بسیار بسیار کمتر از عدم حتمیّت ناشی از محدودیت دانش در زندگی روزمره است. در اینجا انسان در جهانی زیست می کند که توسط فیزیک کلاسیک توصیف می شود، و در حالت اول انسان در جهانی زندگی می کند که توسط فیزیک مدرن وصف می شود. بین این دو نوع توصیف تفاوتی موجود نیست که تأثیر قابل ملاحظه ای در مسئله انتخاب آزاد و رفتار اخلاقی بگذارد. در هر دو حالت انسان نتایج اعمالش را نه با حتمیّت، بلکه با درجه ای از احتمال پیش بینی می کند، عدم تعیّن در مکانیک کوانتومی, هیچ تأثیر قابل مشاهده ای بر سنگی که انسان پرتاب می کند، ندارد. چون سنگ مجتمع عظیمی است از میلیاردها ذره. در جهانی که انسان زندگی می کند عدم تعیّن مکانیک کوانتومی نقشی ایفا نمی کند. به همین دلیل این پندار را که عدم تعیّن در سطح زیر اتمی ربطی به مسئله اراده آزاد دارد، می توان باطل دانست." دیوید هیوم در نقد خود به مسئله علیت استدلال می کند که هیچ دلیلی وجود ندارد که فرض کنیم ضرورتی درونی, در وقایع متواتر علت و معلول وجود دارد. واقعه ای را مشاهده می کنید و سپس واقعه دیگری را. آنچه که مشاهده کرده اید چیزی نیست جز تواتر زمانی وقایع یکی پس از دیگری و هیچ ضرورتی در اینجا مشاهده نشده است. بهتر است بگوییم علیت در مکانیک کوانتومی به مفهوم اصیل آن حذف نمی شود بلکه این تعبیر سنتی جبرگرایانه آن است که حذف میشود.
علیت در تعریف، براین اصل استواراست که یک واقعیتفیزیکی, بستگی به دیگری دارد و پژوهش فیزیکدانان کشف این وابستگی می باشد و مشاهده می کنیم که این مسئله هنوز هم درمکانیک کوانتومی صادق است. اگرچه اشیا مورد مشاهده که برای آنها این وابستگی ادعا میشود متفاوتند، اینها احتمالات رخدادهای بنیادی مطرح هستند و نه خود رخدادها.هایزنبرگ نیز به این مسئله اذعان داشت که در اصل عدم قطعیت آنچه که سبب ناسازگاری با علیت می گردد در حقیقت نقص تعیین(under determinate) در مقدمه استنتاج است. به طوری که ما نمی توانیم از وضع کنونی سیستم به طور کامل مطلع بشویم. بنابراین طبیعی است که نتیجه به صورت محتمل درآید. اگر علیت را به تمام و کمال به معنای قابلیت پیش بینی پذیری بدانیم آنگاه مکانیک کوانتومی ناقض علیت خواهد بود. اما پیش بینی پذیری علاوه بر اعتبار علیت عامه به دانش ما در باره طبیعت و شرایط اولیه هم نیاز دارد. هیوم و بیکن و برنارد و میل هیچکدام بر اساس علیت خدشه ای وارد نکردند. بحث آنها بیشتر تمایز میان ضرورت منطقی و ضرورت تجربی است. در ثانی حتی در فیزیک کلاسیک نیز که باور عمومی بر این است که موجبیتی است و رفتار آینده هر سیستم منزوی را می توان از حالت فعلی آن تعیین نمود, در موار بسیاری برخورد آماری با سیستم صورت می گیرد. مانند دینامیک گازها یا سیستمهای هنگردی(ensemble) در مکانیک آماری. اگرچه که در آنجا فرض را بر این می گذارند که با محاسبه تک تک ذرات سیستم می توان اطلاعات کاملی از وضع کلی سیستم بدست آورد اما بدلیل دشواری محاسبه, برایند خواص اجزای سیستم را بصورت آماری تحلیل می کنیم. ارسطو تحقق چهار علت فاعلی ,مادی, صوری و غایی را برای وقوع رویدادها ذکر کرده است.
از منظر ارسطویی هرگاه این چهار علت فراهم آیند وجود معلول بالضروره تحقق می یابد. از این رو قواعد مکانیک و ریاضیات را می توان به نوعی علت غایی پدیده ها پنداشت. تحلیل ابعادی در مکانیک کلاسیک به گونه ای است که در ابتدا پارامترهای موثر در یک پدیده تعیین و مطابق با نظریه پی بوکینگهام ارتباط میان پارامترهای مستقل و وابسته مشخص می گردد. در این روش ابتدا تمام پارامترهایی که گمان می کنیم بر پدیده موثرند را فهرست می کنیم. در صورتی که نسبت به تاثیر یک پارامتر در وقوع پدیده تردید وجود داشته باشد باز هم آن پارامتر را وارد می کنیم. اگر پارامتر به پدبده مربوط نباشد پارامتر اضافی Π ظاهر می گردد. این پارامتر که در نهایت مشخص می گردد هیچ تاثیری روی پدیده فیزیکی ندارد در رابطه نهایی که می خواهیم بدست آوریم وارد نمیشوند. یا اینکه در نهایت یک گروه بی بعد بیشتر به دست می آید که آزمایش نشان می دهد آنها اضافی هستند. در هر صورت آنچه مسلم است امکان دارد متغیرهای نهان در پدیده ها موثر باشند و از نظر ما مغفول مانده باشند. دیوید بوهم که از منتقدین تعبیر کپنهاگی است همواره به دنبال نظریه کوانتومی بدیلی بود که فاقد عدم قطعیت باشد. او برای رد عدم قطعیت, یک جمله به معادله شرودینگرErwin Schrödinger که تعبیری بالنسبه جبرگراترازمکانیک کوانتومی بود اضافه نمود.
−h² [∂² ψ (x,t)] / 2m∂x² + V(x,t) ψ (x,t) = ih ∂ψ (x,t)/∂t
اگر مقادیر مجموعه کامل کمیتهای یک حالت برای زمان t داده شده باشد،آنگاه تابع موج کوانتومی دستگاه برای زمان t به طور منحصر به فرد تعیین می گردد. این تابع موج، در مکانیک کوانتومی نقشی شبیه به توصیف حالت در مکانیک کلاسیک بازی می کنند. فرم ریاضی معادله شرودینگر شبیه به یک قانون جبری است. از این رو اگر تابع موج کوانتومی را نمایش کامل حالت آنی بدانیم،باید بگوییم جبریت درمکانیک کوانتومی نیز حفظ میشود. اضافه کردن یک جمله به معادله شرودینگر توسط بوهم اگرچه عدم قطعیت در مکان و اندازه حرکت را از میان می برد اما این کار مستلزم در نظر گرفتن متغیرهایی است که قابل آشکارسازی نیستند. بوهم این جمله اضافه شده به معادله شرودینگر را " پتانسیل کوانتومی" می نامد. البته نه اینشتین و نه خود بوهم این اصلاحیه بوهم بر مکانیک کوانتومی را که فقط به جهت خلاصی از عدم قطعیت صورت می گرفت جدی تلقی نکردند. فی الواقع نظریه بوهم هیچ برتری خاصی نسبت به فرم پیشین مکانیک کوانتومی ندارد وتنها از این جهت مورد توجه برخی قرار گرفته که چالشی برای تابوی علیت وناخرسندی برای اذهان علیت باور,ایجاد نمی نماید. تعابیر جدیدتر از مکانیک کوانتومی نسبت به مسائل مطروحه در چند سال اول ارائه آن به مراتب پیچیده تر است. تعابیر یوجین ویگنر(eygene wigner) و نیز مبحث جهان های موازی اورت(Everett) بنیادهای فلسفی ذهن بشر را دگرگون کرده اند. آیا میتوان تصور کرد که روزی انسان به دانشی بلاواسطه ازحقیقت مطلق دست یابد و به دغدغه فلسفی کهنی چون پرسش از چندی و چونی مثل افلاطونی, گوهر اسپینوزایی و ذات و نومن کانتی خاتمه دهد؟ هنوز هیچکس پاسخ این پرسش را نمی داند.
82 صفحه
ترمزهای اتومبیل
این فصل کاربرد و عملکرد انواع ترمزهای مورد استفاده در اتومبیل را تشریح می کند . از آنجائی که اکثریت ترمزهای امروزی بوسیلة هیدرولیک بکار می افتد ، در این فصل کاربرد ترمزهای هیدرولیکی و ساختمان آنها شرح داده شده است . دو نوع ترمز هیدرولیکی وجود دارد : دیسکی و کاسه ای . در نوع کاسه ای ، کفشکهای ترمز به سطح داخلی کاسه ترمز می چسبند و در ترمز نوع دیسکی ، لقمه های مسطح ترمز یا کفشکها به دیسک مسطح می چسبند .
1ـ1ـ کاربرد و انواع ترمزها:
ترمزها حرکت اتومبیل را کند و یا متوقف می سازند . ترمزها ممکن است توسط سیستمهای مکانیکی ، هیدرولیکی ، فشار هوا و یا وسائل الکتریکی بکار انداخته شوند. وقتی که راننده پدال ترمز را فشار می دهد ، کفشکهای ترمز یا لقمه ها بطرف کاسه ترمز یا دیسک ترمز حرکت می کنند .
اصطکاک بین کفشکها یا لقمه ها با کاسه باعث کاهش حرکت و یا توقف اتومبیل می شود . در شکل (1ـ1) مکانیزم ترمز چهارچرخ را که از نوع کاسه ای است ، نشان داده شده است .
شکل (2ـ1) مجموعه کاسه ترمز را اطراف کفشکها نشان می دهد . کفشکهای ترمز با یک ماده آسبست که می تواند در مقابل گرما مقاومت کند و اثر خوبی در مقابل کشش داشته باشد لنت کوبی می شود . موقعی که کفشکها به کاسه ترمز یا دیسک نیرو وارد می کنند ، گرما و کشش در آن زیاد می شود . در طول یک ترمز شدید کفشکها ممکن است با یک فشارPsi 1000 به کاسه یا دیسک فشرده شوند . وقتی که اصطکاک یا فشار افزایش می یابد ، یک کشش اصطکاکی قوی روی کاسه ترمز یا دیسک ایجاد میشود و یک اثر ترمزی قوی روی چرخها نتیجه می گردد .
همچنین یک مقدار زیادی از گرما بوسیلة اثر اصطکاک ایجاد می گردد . کاسه دیسک و کفشکها گرم می شوند . نهایتاً ممکن است درجه حرارت به 500 درجه فارنهایت یا 260 درجه سانتی گراد برسد . این گرما به طرق مختلف به کاسه یا دیسک منتقل می شود . بعضی کاسه های ترمز پره های خنک کننده دارند که یک سطح اضافی خنک کننده که گرما را بطور آسانتر به هوا منتقل کنند بوجود می آورند . حرارت های زیاد برای ترمزها خوب نیست زیرا حرارت لنت ممکن است آن را ذغال کند. بنابراین اثر ترمزی کم خواهد شد . در یعضی اتومبیلهای مسابقه ای از لنتهای آسبستی فلزی استفاده کرده اند . این ترمزها یک سری از بالشتک های فلزی که به کفشکهای ترمز وصل شدند ، دارند (شکل 3ـ1) این ترمزها می توانند درمقابل کارکرد ترمز و همچنین درجه حرارتهای بالا مقاومت بیشتری داشته باشند و تمایل کمتری به حالت (Fade) یا کم شدن دارند .
در ترمزهای دیسکی بعلت اینکه دیسک خنک می شود ، حالت Fade کمتری وجود دارد . بطور مثال در شکل (4ـ1) یک دریچة تهویه هوا یا پره های خنک کن برای کمک به انتقال حرارت وجود دارد . توجه کنید که فقط یک قسمت کوچک از دیسک در تماس با لقمه ها می باشد .
اصطکاک بین کفشکها یا لقمه ها با کاسه باعث کاهش حرکت و یا توقف اتومبیل می شود . در شکل (1ـ1) مکانیزم ترمز چهارچرخ را که از نوع کاسه ای است ، نشان داده شده است .
. کفشکهای ترمز با یک ماده آسبست که می تواند در مقابل گرما مقاومت کند و اثر خوبی در مقابل کشش داشته باشد لنت کوبی می شود . موقعی که کفشکها به کاسه ترمز یا دیسک نیرو وارد می کنند ، گرما و کشش در آن زیاد می شود . در طول یک ترمز شدید کفشکها ممکن است با یک فشارPsi 1000 به کاسه یا دیسک فشرده شوند . وقتی که اصطکاک یا فشار افزایش می یابد ، یک کشش اصطکاکی قوی روی کاسه ترمز یا دیسک ایجاد میشود و یک اثر ترمزی قوی روی چرخها نتیجه می گردد .
همچنین یک مقدار زیادی از گرما بوسیلة اثر اصطکاک ایجاد می گردد . کاسه دیسک و کفشکها گرم می شوند . نهایتاً ممکن است درجه حرارت به 500 درجه فارنهایت یا 260 درجه سانتی گراد برسد . این گرما به طرق مختلف به کاسه یا دیسک منتقل می شود . بعضی کاسه های ترمز پره های خنک کننده دارند که یک سطح اضافی خنک کننده که گرما را بطور آسانتر به هوا منتقل کنند بوجود می آورند . حرارت های زیاد برای ترمزها خوب نیست زیرا حرارت لنت ممکن است آن را ذغال کند. بنابراین اثر ترمزی کم خواهد شد . در یعضی اتومبیلهای مسابقه ای از لنتهای آسبستی فلزی استفاده کرده اند . این ترمزها یک سری از بالشتک های فلزی که به کفشکهای ترمز وصل شدند ، دارند (شکل 3ـ1) این ترمزها می توانند درمقابل کارکرد ترمز و همچنین درجه حرارتهای بالا مقاومت بیشتری داشته باشند و تمایل کمتری به حالت (Fade) یا کم شدن دارند .
در ترمزهای دیسکی بعلت اینکه دیسک خنک می شود ، حالت Fade کمتری وجود دارد . بطور مثال در شکل (4ـ1) یک دریچة تهویه هوا یا پره های خنک کن برای کمک به انتقال حرارت وجود دارد . توجه کنید که فقط یک قسمت کوچک از دیسک در تماس با لقمه ها می باشد .
67 صفحه
آسیبهایی که هنگام تولید یا ماشین کاری مواد و قطعات به آنها وارد می شود، به صورت نقصهایی از قبیل ترک، تخلخل و ناخالصی ظاهر می شوند، در حالی که نقصهای دیگر مثل ترک خستگی، ضمن کار به وجود می آیند. تشخیص و آشکارسازی این گونه آسیبها ضروری است و لازم است محل و اندازه آنها به دقت مشخص گردد تا امکان تصمیم گیری برای رد و قبول قطعه فراهم شود.
روشهای چندی به عنوان روشهای آزمون غیرمخرب (NDT)[1] برای بازرسی مواد و قطعات به کار میروند. تمام این روشها، بسته به کاربردشان، می توانند به تنهایی یا همراه با آزمونهای دیگر به کار روند. گرچه آزمونهای مختلف فصل مشترکهایی نیز دارند، اما هر آزمون مکمل آزمونهای دیگر است. برای مثال، هرچند آزمون فراصوتی می تواند مویه های سطحی و درونی قطعه را آشکار سازد، اما نباید چنین نتیجه بگیریم که این آزمون لزوماً بهترین روش موجود برای تمامی بازرسی هاست. درانتخاب دستگاه مناسب آزمون، بسته به نوع ترک، شکل و اندازه قطعه باید مورد توجه قرار گیرد.
توضیح عمومی ظاهر و منشأ ترکها ممکن است مفید باشد. ترکها می توانند بین دانه ای یا درون دانه ای باشند. ترکهای ناشی از کوئنچ معمولاً در دسته دوم جای می گیرند. در برخی موارد بخشی از مسیر گسست، دانه را قطع می کند و بخشی از مرزدانه می گذرد. ترکها ممکن است در جهات بسیار مختلفی و همچنین در مواضع بسیار متنوعی گسترش یابند. فضای داخلی ترکها ممکن است خالی، پر از محصولات اکسیدی یا پر از مواد خارجی باشد. انواع معمول ترکها و علل آنها به این صورت فهرست می شوند: ترکهای ناشی از کوئنچ یا سختکاری که به دلیل تغییرات حجمی سریع به وجود می آیند، ترکهای بازپخت[2] که در حرارت دهی سریع ایجاد می شوند، ترکهای انقباضی ناشی از سردکردن بسیار سریع، پارگی های گرم[3] ناشی از طراحی نامناسب قالب و روش ناصحیح ریختن مواد، ترکهای سنگ زنی[4] ناشی از حرارت موضعی اصطکاک چرخ سنباده، همچنین امکان دارد ترکها در اثر تنش های پسماند، کاهش زیاد در کار سرد، فورج نامناسب، چینها[5]، آخالهای زود ذوب، جدایش[6]، طراحی ناصحیح، نورد نامناسب، حبابهای محبوس شده هوا، لبه های تیز قالب و حک کاری[7] به وجود آمده باشند. در میان عیوب سطحی، سردجوشی[8]، چینها، چین خوردگی سطحی فلزات[9]، درزها[10]، ترکهای مویی و خراشها[11]، قرار دارند.
روشهای حرارتی
در این روشها پس از اعمال حرارت، توزیع دمای حاصل مورد بررسی قرار می گیرد. نقایص،توزیع دمایی قطعه کار را تغییر می دهند. اعمال حرارت می تواند به روشهای چندی از جمله تماس حرارتی مستقیم با منبع حرارتی، جریان الکتریسیته، القای حرارت و منابع نور فروسرخ صورت گیرد. توزیع دمای حاصل با استفاده از موادی چون موم، استئارین، فسفرهای حساس به حرارت، مواد رسانای نور و یا ابزارهایی چون گرماسنج و ترموکوپل یا روشهایی چون تشکیل اکسیدهای خالص و منجمد کردن قابل بررسی است.
2-6- بازرسی با تشعشعات صوتی (AE)
تشعشعات صوتی، امواج نشی هستند که با حرکت اگهانی در مواد تنشدار ایجادمی شود.
منابع کلاسیک تشعشعات صوتی، فرآیندهای تغییر شکل مربوط به نقص است مانند رشد ترک و تغییر شکل پلاستیک. حرکت ناگهانی در منبع، یک موج تنش تولید می کند که در ساختار ماده منتشر می- شود و یک ترانسدیوسر پیزوالکتریک حساس را تحریک می نماید. وقتی تنش ماده بالا می رود، بسیاری از این تشعشعات به وجود می آیند. سیگنال های ناشی از یک یا چند حسگر[1] تقویت و اندازه گیری می شوند تا دادههایی برای نمایش و تفسیر به وجود آید.
2-7- بازرسی با امواج مایکرو
مایکروموج ها (امواج رادار) شکلی از تابش های الکترومغناطیس هستند که در طیف الکترو-مغناطیسی جای دارند. گستره بسامدی این امواج بین MHz 300 و GHz 325 است. این گستره بسامد مربوط به طول موج هایی بین Cm 1000 و mm 1 است.
یکی از اولین کاربردهای مهم امواج مایکرو برای رادار بود. اولین کاربرد آنها در NDT برایاجزایی مثل موج بر[2]، میراکننده ها[3] ، محفظه ها، آنتن ها و پوشش آنتن رادار بوده است. واکنش متقابل بین انرژی الکترومغناطیسی مایکروموج با ماده شامل اثر ماده روی میدانهای الکتریکی و مغناطیسی تشکیل دهنده موج الکترومغناطیسی است. به عبارتی اثر میدانهای الکتریکی و مغناطیسی روی هدایت ویژه[4]، ثابت دی الکتریک[5] و نفوذپذیری[6] ماده است.
100 صفحه
نه تنها جهان دنش و دنیای امروز متوجه ذره که همه اشیاء عالم خلقت را تشکیل می دهد، می باشد و نیرو و خاصیت آنرا مورد بررسی قرار داده است، بلکه بشر همواره در این امر تعلق داشته و تا آنجا که محیط و وسعت دانش او اجازه میداده در شناسائی و کشف آن کوشیده است. یونانیان قدیم در طریق کشف ذره پیشقدم بوده اند. اولین فردی که در مطالعه و بحث راجع به اتم پرداخت، دمکریتوس یونانی آن هم در 2500 سال پیش بوده است.
اما دانشمندان ایرانی از قبیل ابوعلی سینا فیلسوف نامدار و طبیب حاذق و ملاصدرا و امام غزالی و غیره نسبت به ذره و خاصیت آن شرح و بسط داده اند و با عبارت طنز ادبی حقیقت علمی و تغییر ناپذیر اتم را آشکار ساخته اند.
اتم یعنی ذره کوچکترین جز شیء مادی است که منشأ تشکیل اشیاء است. همه چیز از اجتماع ذرات کوچک اتم متشکل گردیده جهان و موجودات در آن هسته مجموع اجتماع ذرات اتم هستند اتم یا ذره خود از هسته مرکزی و ذرات ریز دیگری بنام الکترون تشکیل شده اند. ذرات موجود در هسته اتم پروتون نام دارند (بار الکتریکی مثبت) اما چون طبق قانون جاذبه (هم نام دافعه) نیرویی این ذرات را به یکدیگر متصل کرده است که به آن نوترون گویند. نوترون بار الکتریکی ندارد. الکترون ها که به دور هسته در حال گردش اند دارای بار منفی اند، اگر تعداد پروتون ها و الکترون های درون یک اتم مساوی باشد، آن اتم از نظر بار الکتریکی خنثی است.
در جهان هستی سه نیرو وجود دارد نیروی جاذبه ی نیوتونی (نام کاشف نیروی جاذبه) نیروی الکترومغناطیسی و نیروی اتمی و یا انرژی ذره ای که مورد بحث این پژوهش است که دارای جرم و انرژی و نور و تشعشع می باشد و مطابق فرضیه ی آلبرت انیشتین با قابلیت تبدیل جرم و انرژی بیکدیگر تحت فرمول E=MC2 منشأ اکتشافات جدید در جهان هستی و سیر در کرات و پی بردن به اسرار آن ها گردیده است هرچند اتم موجود انرژی و نور و حرارت است اما بشر تا چند قرن قبل بعظمت و نیروی خارق العاده آن پی نبرده و خواص فراوان آن را نمی دانست.
قرن هجدهم و نوزدهم را که دوران کشف جدید و ترقی و تعالی بشر می توان نامید، مغزهای متفکر باهوش، کنجکاوی بسیار کردند و با رنج فراوان و کوشش زیاد بکشف اسرار اتم آنطور که علم و عمل خواهان آن بود، نائل آمدند. امروزه با وسع دانش و بینش نظری و علمی، استفاده از نیروی شگرف اتمی عالمگیر شده و در اقصی نقاط جهان از این منبع عظیم قدرت بهره برداری علمی، فنی، طبی، اجتماعی و غیره می شود.
از برکت این کشف مهم در زمان صلح، فواید بی شماری عاید مردم جهان گردیده است. امروزه با استفاده معقول و مفید در اثر مهار کردن اتم، بشر توانسته با نیروی درمانی بر قخطی و گرسنگی غلبه نماید، آفات نباتی را از بین ببرد، کود لازم و مقدار دقیق آنرا در ازدیاد محصول کشاورزی معلوم نماید و عملاً نظریه معروف مالتوس را مبنی بر افزایش روز افزون جمعیت کره ی زمین و محدودیت مواد خوراکی مردود اعلام دارد.
امروزه از اتم و نیروی آن بحصول اشعه ی آلفا برای کنسرو غذاها و جلوگیری از خرابی و فساد آنها استفاده می کنند و در بهداشت عمومی و دفع مرض و طول عمر از آن بهره برداری می نمایند.
در امور پزشکی اتم کمک بسیاری نموده علاوه بر استفاده های عظیم علمی و لابراتوری و تشخیص و معالجه امراض ناشناخته و صعب العلاج پزشکان را راهنمائی دقیق است.
با استفاده از اشعه رادیواکتیویته قسمت های نامرئی بدن از قبیل مغز استخوان و غیره قابل رویت است و رادیوگرافی و رادیوسکوپی امروز کمک فراوانی به تشخیص عضو مریض و درمان آن می نماید. همین کشف مهم امراض غیر قابل علاج از قبیل سرطان که قبلاً معالجه آن ها غیر ممکن بوده، درمان می شود.
اما در کنار این همه مفاد، مضرراتی هم دارد. مثلاً اشعه رادیواکتیویته با وجود اینکه سلول سرطانی را می سوزاند، بناچار ببافتهای اطراف لطمه می زند. به عبارت دیگر در عین سرطان زدایی، خود سرطان را می گیرد و مولد سرطان در پوست و عضو سرطانی می شود. در دستگاه تناسلی اثر می گذارد و کسی که در معرض مستقیم اشعه آن قرار گیرد، عقیم می شود. این اشعه موجب سوختگی بدن و کوتاهی عمر می گردد. اما با استفاده از لوازم و ابزار مناسب، انسان ها را از این بلاها حفظ می کند.
استفاده ی صنعتی از اتم امروز در کارخانجات رایج گشته، کارخانه برق اتمی، اتمی، یخ شکن عظیم و ... همه محصول این نیروی عظیم هستند.
دیگر امروز برای بکار انداختن موتور مولد برق، نیاز به سوخت زیاد و انرژی آبشاری نیست، بلکه با مهار کردن اتم بوسیله ی ایجاد در آکسیون زنجیری در رآکتورها، می توان نیروی فراوان برق تولید کرد که بمصارف روشنائی و سوخت دور افتاده ترین دهات جهان برسد.
در هنر نقاشی و حرف و صنایع سبک و سنگین، بخوبی بهره برداری می گردد. استفاده از اتم در علوم مختلف از قبیل زیست شناسی، خاک شناسی، باستان شناسی امکان پذیر است و عملاً مورد اقدام و اجراء می باشد. برای تعیین قدمت سن خاک، اشیاء، اموات، گیاهان کربن 14 ایزوتوپ کربن و رادیواکتیوتیه و خاصیت اتمی دارند، استفاده می کنند.
در علوم جنائی و جرم شناسی و کشف بزه، دقت نظر اتم قابل توجه است. در نمونه برداری آلت ناچیز جرم از قبیل مو و لکه ریز خون و عرق، در تشخیص نوع و رنگ و محتوی آن دقت نظر کامل و موشکافی دقیق دارد که در کشف حقیقت و اجرای عدالت که قوام جامعه بر پایه صحیح آن استوار است، کمک می نماید. فوائد فراوان و ارزنده اتم در این مختصر قابل برشماری نیست.